Nanotechnologies in Russia

, Volume 13, Issue 1–2, pp 34–37 | Cite as

Formation of an Array of Memristor Structures Using a Self-Assembly Matrix of Porous Anodic Aluminum Oxide

  • A. N. BelovEmail author
  • A. A. Golishnikov
  • M. V. Kislitsin
  • A. A. Perevalov
  • A. V. Solnyshkin
  • V. I. Shevyakov


In this paper we demonstrate a technological route for the formation of an array of memristor structures using a self-assembly matrix of porous anodic aluminum oxide. We propose using a porous alumina matrix as a solid mask to develop pores in the dense silicon oxide layer below the mask, in which a material characterized by the possibility of resistive switching is formed. The merit of this mask should include reproducibility and the high-precision control of geometric parameters of the pores. The current-voltage characteristics of a memristor structure based on solid electrolyte Cu2S are determined.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. O. Chua, “Resistance switching memories are memristors,” Appl. Phys. Lett. 102, 765–783 (2011).Google Scholar
  2. 2.
    R. Waser and M. Aono, “Nanoionics-based resistive switching memories,” Nat. Mater. 6, 833–840 (2007).CrossRefGoogle Scholar
  3. 3.
    J. J. Yang, D. B. Strukov, and D. R. Stewart, “Memristive devices for computing,” Nat. Nanotechnol. 8, 13–24 (2013).CrossRefGoogle Scholar
  4. 4.
    A. N. Belov, A. A. Perevalov, and V. I. Shevyakov, “Physics-technological fabrication of memresistors for microand nanoelectronics. Review,” Izv. Vyssh. Uchebn. Zaved., Elektron. 22, 305–321 (2017).Google Scholar
  5. 5.
    J. Qi, M. Olmedo, J. Ren, N. Zhan, J. Zhao, J. Zheng, and J. Liu, “Resistive switching in single epitaxial ZnO nanoislands,” ACS Nano 6, 1051–1058 (2012).CrossRefGoogle Scholar
  6. 6.
    Y. Ahn and J. Y. Son, “The effect of size on the resistive switching characteristics of NiO nanodots,” J. Phys. Chem. Solids 99, 134–137 (2016).CrossRefGoogle Scholar
  7. 7.
    J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and R. S. Williams, “Memristive switches enable stateful logic operations via material implication,” Nature (London, U.K.) 464, 573–576 (2010).CrossRefGoogle Scholar
  8. 8.
    Q. Xia, W. Robinett, M. W. Cumbie, N. Banerjee, T. J. Cardinali, J. J. Yang, W. Wu, X. Li, W. M. Tong, D. B. Strukov, G. S. Snider, G. Medeiros-Ribeiro, and R. S. Williams, “Memristor-CMOS hybrid integrated for reconfigurable logic,” Nano Lett. 9, 3640–3645 (2009).CrossRefGoogle Scholar
  9. 9.
    L. Martínez, O. Ocampo, Y. Kumar, and V. Agarwal, “ZnO-porous silicon nanocomposite for possible memristive device fabrication,” Nanoscale Res. Lett. 9, 437–443 (2014).CrossRefGoogle Scholar
  10. 10.
    J. W. Mares, J. S. Fain, and S. M. Weiss, “Variable conductivity of nanocomposite nickel oxide/porous silicon,” Phys. Rev.. 88, 075307 (2013).CrossRefGoogle Scholar
  11. 11.
    A. S. Vedeneev, V. V. Rylkov, K. S. Napolskii, A. P. Leontiev, A. A. Klimenko, A. M. Kozlov, V. A. Luzanov, S. N. Nikolaev, M. P. Temiryazeva, and A. S. Bugaev, “Effects of electron drag of gold in pores of anodic aluminum oxide: Reversible resistive switching in a chain of point contacts,” JETP Lett. 106, 411 (2017).CrossRefGoogle Scholar
  12. 12.
    K. Liang, C. Huang, C. Lai, J. Huang, H. Tsai, Yi. Wang, Yu. Shin, M. Chang, S. Lo, and Yu. Chueh, “Single CuOx nanowire memristor: Forming-free resistive switching behavior,” ACS Appl. Mater. Interfaces 6, 16537–16544 (2014).CrossRefGoogle Scholar
  13. 13.
    N. J. Lee, B. H. An, A. Y. Koo, H. M. Ji, J. W. Cho, J. Choi, K. K. Kim, and C. J. Kang, “Resistive switching behavior in a Ni–Ag2Se–Ni nanowire,” Appl. Phys. A 102, 897–900 (2011).CrossRefGoogle Scholar
  14. 14.
    U. Han and J. Lee, “Bottom-up synthesis of ordered metal/oxide/metal nanodots on substrates for nanoscale resistive switching memory,” Sci. Rep. 6, 25537 (2016).CrossRefGoogle Scholar
  15. 15.
    M. V. Kislitsin, M. A. Korolev, and A. Yu. Krasyukov, “Study of the formation of silicon oxide films from tetraethoxysilane solution using the sol-gel method,” Russ. Microelectron. 43, 445–448 (2014).CrossRefGoogle Scholar
  16. 16.
    S. A. Gavrilov, A. N. Belov, A. V. Zheleznyakova, D. Yu. Barabanov, V. L. Shevyakov, and E. V. Vishnikin, “Factors effected on nanoporous anodic alumina ordering,” Proc. SPI. 6260, 626011 (2006).CrossRefGoogle Scholar
  17. 17.
    A. N. Belov, “Local etching of silicon using a solid mask from porous aluminum oxide,” Semiconductors 42, 1519–1521 (2008).CrossRefGoogle Scholar
  18. 18.
    A. N. Belov, S. A. Gavrilov, M. Yu. Nazarkin, V. I. Shevyakov, and S. V. Lemeshko, “Peculiarities of measurements in scanning electrical-conductivity microscopy,” Russ. Microelectron. 41, 431–436 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. N. Belov
    • 1
    Email author
  • A. A. Golishnikov
    • 1
  • M. V. Kislitsin
    • 1
  • A. A. Perevalov
    • 1
  • A. V. Solnyshkin
    • 2
  • V. I. Shevyakov
    • 1
  1. 1.National Research University of Electronic TechnologyMoscowRussia
  2. 2.Tver State UniversityTverRussia

Personalised recommendations