Nanotechnologies in Russia

, Volume 12, Issue 7–8, pp 395–399 | Cite as

Mechanically Synthesized Composite Powder Based on AMg2 Alloy with Graphite Additives: Particle Size Distribution and Structural-Phase Composition

  • A. V. Aborkin
  • M. I. AlymovEmail author
  • A. V. Kireev
  • A. I. Elkin
  • A. V. Sobol’kov


Nanostructured composite powders based on AlMg2 alloy with graphite additives (1–9 wt %) have been obtained by mechanochemical synthesis in a planetary ball mill. Particle size distribution and the specific surface area of powders are measured. X-ray diffraction, Raman spectroscopy, and transmission electron microscopy are used to study the structural and phase composition of the powders. It is established that the hardening of composite powders is caused by the reduction of grain size, as well as by mechanisms of solid-solution and dispersion hardening. These nanostructured composite powders can be used in the manufacture of products by forming techniques and additive technologies.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. V. Aborkin, A. I. Elkin, and D. M. Babin, “Features of the variation of energy-power parameters, temperature, and hydrostatic pressure under continuous extrusion of a noncompact aluminum material,” Russ. J. Non-Ferrous Met. 57, 14–18 (2016).CrossRefGoogle Scholar
  2. 2.
    V. D. Berbentsev, V. I. Bugakov, V. E. Vaganov, M. I. Alymov, and A. V. Aborkin, “Plastic deformation of the plastic matrix–hard inclusion composite system during high-temperature gas extrusion,” Russ. Metall. (Engl. Transl.) 2016, 1083–1086 (2016).CrossRefGoogle Scholar
  3. 3.
    V. E. Vaganov, A. V. Aborkin, M. I. Alymov, and V. D. Berbentsev, “State of the art and the prospects of high-temperature gas extrusion to produce thin-section rods made of hard-to-deform, including nanostructured, alloys,” Russ. Metall. (Engl. Transl.) 2015, 732–738 (2015).CrossRefGoogle Scholar
  4. 4.
    K. Kallip, M. Leparoux, K. A. AlOgab, S. Clerc, G. Deguilhem, Y. Arroyo, and H. Kwon, “Investigation of different carbon nanotube reinforcements for fabricating bulk AlMg5 matrix nanocomposites,” J. Alloys Compd. 646, 710–718 (2015).CrossRefGoogle Scholar
  5. 5.
    Z. Y. Liu, S. J. Xu, B. L. Xiao, P. Xue, W. G. Wang, and Z. Y. Ma, “Effect of ball-milling time on mechanical properties of carbon nanotubes reinforced aluminum matrix composites,” Composites, Part A 43, 2161–2168 (2012).CrossRefGoogle Scholar
  6. 6.
    I. A. Evdokimov, T. A. Chernyshova, G. I. Pivovarov, P. A. Bykov, L. A. Ivanov, and V. E. Vaganov, “Tribological behavior of aluminum matrix composites reinforced with carbon nanostructures,” Inorg. Mater. Appl. Res. 5, 255–262 (2014).CrossRefGoogle Scholar
  7. 7.
    A. V. Aborkin, I. A. Evdokimov, V. E. Vaganov, M. I. Alymov, D. V. Abramov, and K. S. Khor’kov, “Influence of mechanical activation mode on morphology and phase composition of Al-2Mg-nC nanostructured composite material,” Nanotechnol. Russ. 11, 297–304 (2016).CrossRefGoogle Scholar
  8. 8.
    T. Xing, L. H. Li, L. Hou, X. Hu, S. Zhou, R. Peter, M. Petravic, and Y. Chen, “Disorder in ball-milled graphite revealed by Raman spectroscopy,” Carbon 57, 515–519 (2013).CrossRefGoogle Scholar
  9. 9.
    A. V. Aborkin, D. M. Babin, and A. A. Zakharov, “Effect of passes number with equal-channel angular pressing on aluminum alloy performance properties,” Materialovedenie, No. 11, 33–37 (2013).Google Scholar
  10. 10.
    H.-J. Lee, J.-K. Han, S. Janakiraman, B. Ahn, M. Kawasaki, and T. G. Langdon, “Significance of grain refinement on microstructure and mechanical properties of an Al-3% Mg alloy processed by high-pressure torsion,” J. Alloys Compd. 686, 998–1007 (2016).CrossRefGoogle Scholar
  11. 11.
    F. Salver-Disma, J.-M. Tarascon, C. Clinard, and J.-N. Rouzaud, “Transmission electron microscopy studies on carbon materials prepared by mechanical milling,” Carbon 37, 1941–1959 (1999).CrossRefGoogle Scholar
  12. 12.
    C. P. Marshall and M. A. Wilson, “Ball milling and annealing graphite in the presence of cobalt,” Carbon 42, 2179–2186 (2004).CrossRefGoogle Scholar
  13. 13.
    Y. Zhou and Z. Q. Li, “Structural characterization of a mechanical alloyed Al–C mixture,” J. Alloys Compd. 414, 107–112 (2006).CrossRefGoogle Scholar
  14. 14.
    A. Ferrari and J. Robertson, “Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon,” Phys. Rev. B 64, 075414 (2001).CrossRefGoogle Scholar
  15. 15.
    A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B 61, 95–107 (2000).CrossRefGoogle Scholar
  16. 16.
    A. Santos-Beltrán, V. Gallegos-Orozco, R. Goytia Reyes, M. Miki-Yoshida, I. Estrada-Guel, and R. Martinez-Sánchez, “Mechanical and microstructural characterization of dispersion strengthened Al–C system nanocomposites,” J. Alloys Compd. 489, 626–630 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. V. Aborkin
    • 1
  • M. I. Alymov
    • 2
    Email author
  • A. V. Kireev
    • 1
  • A. I. Elkin
    • 1
  • A. V. Sobol’kov
    • 1
  1. 1.Vladimir State UniversityVladimirRussia
  2. 2.Merzhanov Institute of Structural Microkinetics and Materials ScienceRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations