Nanotechnologies in Russia

, Volume 12, Issue 3–4, pp 185–192 | Cite as

Sorption of gold nanorods on polyurethane foam as a way to obtain a nanocomposite material with a surface plasmon resonance for chemical analysis purposes

  • M. V. Gorbunova
  • M. A. Matveeva
  • V. V. ApyariEmail author
  • A. V. Garshev
  • P. A. Volkov
  • S. G. Dmitrienko
  • Yu. A. Zolotov


A method for preparing a nanocomposite material containing gold nanorods on a polyurethane foam matrix, which is of interest in analytical chemistry, has been developed by the sorption modification of the matrix. It is found that the sorption of gold nanorods on polyurethane foam was achieved after 30 min of phase contact in the presence of 0.4 M NaCl as an electrolyte. The dependence of the sorption on time is described by the pseudo–first order kinetic equation with a rate constant of 0.17 min–1. The sorption isotherm is fitted by the Langmuir equation. Calculated in the framework of this model, values of the sorption constant and the sorption capacity are equal to 77.6 × 103 L/mol of Au and 15 mg/g, respectively. The potential possibility of the resulting nanocomposite material application for determining reducing agents by diffuse reflectance spectrometry is demonstrated.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. A. Dykman, V. A. Bogatyrev, S. Yu. Shchegolev, and N. G. Khlebtsov, Gold Nanoparticles: Synthesis, Properties, Biomedical Application (Nauka, Moscow, 2008) [in Russian].Google Scholar
  2. 2.
    M.-C. Daniel and D. Astruc, “Gold nanoparticles: Assembly, supramolecular chemistry, quantum-sizerelated properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104, 293–346 (2004).CrossRefGoogle Scholar
  3. 3.
    Y. Sun and Y. Xia, “Gold and silver nanoparticles: A class of chromophores with colors tunable in the range from 400 to 750 nm,” Analyst 128, 686–691 (2003).CrossRefGoogle Scholar
  4. 4.
    L. Pasquato, P. Pengo, and P. Scrimin, “Functional gold nanoparticles for recognition and catalysis,” J. Mater. Chem. 14, 3481–3487 (2004).CrossRefGoogle Scholar
  5. 5.
    P. V. Kamat, “Photophysical, photochemical, and photocatalytic aspects of metal nanoparticles,” J. Phys. Chem. B 106, 7729–7744 (2002).CrossRefGoogle Scholar
  6. 6.
    G. F. Paciotti, D. G. I. Kingston, and L. Tamarkin, “Colloidal gold nanoparticles: a novel nanoparticle platform for developing multifunctional tumor-targeted drug delivery vectors,” Drug Dev. Res. 67, 47–54 (2006).CrossRefGoogle Scholar
  7. 7.
    L. A. Porter, D. Ji, S. L. Westcott, M. Grauppe, R. S. Chernuszewicz, N. J. Halas, and T. R. Lee, “Gold and silver nanoparticles functionalized by the adsorbtion of dialkyl disulfides,” Langmuir 14, 7378–7386 (1998).CrossRefGoogle Scholar
  8. 8.
    R. Resch, C. Baur, A. Bugacov, B. E. Koel, P. M. Echternach, A. Madhukar, N. Montoya, A. A. G. Requicha, and P. Will, “Linking and manipulation of gold multinanoparticle structures using dithiols and scanning force microscopy,” J. Phys. Chem. B 103, 3647–3650 (1999).CrossRefGoogle Scholar
  9. 9.
    S. I. Stoeva, F. Huo, J.-S. Lee, and C. A. Mirkin, “Three-layer composite magnetic nanoparticle probes for DNA,” J. Am. Chem. Soc. 127, 15362–15363 (2005).CrossRefGoogle Scholar
  10. 10.
    X. Zhang, D. Li, and X.-P. Zhou, “From large 3D assembly to highly dispersed spherical assembly: Weak and strong coordination mediated self-aggregation of au colloids,” New J. Chem. 30, 706–711 (2006).CrossRefGoogle Scholar
  11. 11.
    J. J. Storhoff, R. Elghanian, R. C. Mucic, Ch. A. Mirkin, and R. L. Letsinger, “One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes,” J. Am. Chem. Soc. 120, 1959–1964 (1998).CrossRefGoogle Scholar
  12. 12.
    X. He, H. Liu, Y. Li, S. Wang, Y. Li, N. Wang, J. Xiao, X. Xu, and D. Zhu, “Gold nanoparticle-based fluorometric and colorimetric sensing of copper(II) ions,” Adv. Mater. 17, 2811–2815 (2005).CrossRefGoogle Scholar
  13. 13.
    V. V. Apyari, S. G. Dmitrienko, V. V. Arkhipova, A. G. Atnagulov, M. V. Gorbunova, and Y. A. Zolotov, “Label-free gold nanoparticles for the determination of neomycin,” Spectrochim. Acta, Part A 115, 416–420 (2013).CrossRefGoogle Scholar
  14. 14.
    T. G. Choleva, F. A. Kappi, D. L. Giokas, and A. G. Vlessidis, “Paper-based assay of antioxidant activity using analyte-mediated on-paper nucleation of gold nanoparticles as colorimetric probes,” Anal. Chim. Acta 860, 61–69 (2015).CrossRefGoogle Scholar
  15. 15.
    J.-M. Liu, X.-X. Wang, M.-L. Cui, L.-P. Lin, S.-L. Jiang, L. Jiao, and L.-H. Zhang, “A promising non-aggregation colorimetric sensor of AuNRs–Ag+ for determination of dopamine,” Sens. Actuators B 176, 97–102 (2013).CrossRefGoogle Scholar
  16. 16.
    S. G. Dmitrienko, “Polyurethane foam. An old friend in a new quality,” Soros. Obraz. Zh., Khim. 8, 65–70 (1998).Google Scholar
  17. 17.
    V. V. Apyari, S. G. Dmitrienko, and Y. A. Zolotov, “Assessment of condensation of aromatic aldehydes with polyurethane foam for their determination in waters by diffuse reflectance spectroscopy and colorimetry,” Int. J. Environ. Anal. Chem. 89, 775–783 (2009).CrossRefGoogle Scholar
  18. 18.
    V. V. Apyari, S. G. Dmitrienko, V. M. Ostrovskaya, E. K. Anaev, and Y. A. Zolotov, “Use of polyurethane foam and 3-hydroxy-7,8-benzo-1,2,3,4-tetrahydroquinoline for determination of nitrite by diffuse reflectance spectroscopy and colorimetry,” Anal. Bioanal. Chem. 391, 1977–1982 (2008).CrossRefGoogle Scholar
  19. 19.
    B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seedmediated growth method,” Chem. Mater. 15, 1957–1962 (2003).CrossRefGoogle Scholar
  20. 20.
    M. V. Gorbunova, V. V. Apyari, S. G. Dmitrienko, and A. V. Garshev, “Formation of core-shell AuAg nanorods induced by catecholamines: a comparative study and an analytical application,” Anal. Chim. Acta 936, 185–194 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • M. V. Gorbunova
    • 1
  • M. A. Matveeva
    • 1
  • V. V. Apyari
    • 1
    Email author
  • A. V. Garshev
    • 2
  • P. A. Volkov
    • 3
  • S. G. Dmitrienko
    • 1
  • Yu. A. Zolotov
    • 1
  1. 1.Department of ChemistryMoscow State UniversityMoscowRussia
  2. 2.Department of Materials ScienceMoscow State UniversityMoscowRussia
  3. 3.Federal State Unitary Enterprise “State Scientific-Research Institute of Chemical Reagents and High-Purity Chemical Substances (IREA),”MoscowRussia

Personalised recommendations