Advertisement

Nanotechnologies in Russia

, Volume 11, Issue 11–12, pp 735–742 | Cite as

Substrate effect on hydrogen adsorption on gold cluster

  • N. V. Dokhlikova
  • N. N. Kolchenko
  • M. V. Grishin
  • A. K. Gatin
  • B. R. Shub
Article

Abstract

The changes in atomic and electronic structure of the Au13 gold cluster caused by the interaction with C54 graphene nanoflake have been studied using computer simulation in the electron density functional approximation. The mechanism of cluster charge effect on the energy of atomic hydrogen adsorption is determined.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. I. Bukhtiyarov and M. G. Slin’ko, Russ. Chem. Rev. 70, 147 (2001).CrossRefGoogle Scholar
  2. 2.
    B. Roldan Cuenya, Thin Solid Films 518, 3127 (2010).Google Scholar
  3. 3.
    F. Behafarid and B. Roldan Cuenya, Top. Catal. 56, 1542 (2013).Google Scholar
  4. 4.
    N. T. Fofang, T. S. Luk, M. Okandan, G. N. Nielson, and I. Brener, Opt. Express 21, 4774 (2013).CrossRefGoogle Scholar
  5. 5.
    E. Martinsson, M. A. Otte, M. M. Shahjamali, B. Sepulveda, and D. Aili, J. Phys. Chem. 118, 24680 (2014).Google Scholar
  6. 6.
    E. Hazrati, G. Brocks, and G. A. de Wijs, J. Phys. Chem. 118, 5102 (2014).Google Scholar
  7. 7.
    M. V. Grishin, A. K. Gatin, N. V. Dokhlikova, A. A. Kirsankin, A. I. Kulak, S. A. Nikolaev, and B. R. Shub, Kinet. Catal. 56, 532 (2015).CrossRefGoogle Scholar
  8. 8.
    W. Yunyu, L. Zhiquan, L. Bin, S. H. Paul, Y. Zhen, S. Li, E. N. Bryan, and R. J. Nemanich, J. Appl. Phys. 101, 124310 (2007).CrossRefGoogle Scholar
  9. 9.
    M. S. Markus, S. Hackenberg, A. C. van Veen, M. Muhler, V. Plzak, and R. J. Behm, J. Catal. 197, 113–122 (2001).CrossRefGoogle Scholar
  10. 10.
    Li. Liu, Z. Zhou, Q. Guo, Zh. Yan, Y. Yao, and D. W. Goodman, Surf. Sci. 605, L47–L50 (2011).CrossRefGoogle Scholar
  11. 11.
    B. Hammer and J. K. Norskov, Surf. Sci. 343, 211–220 (1995).CrossRefGoogle Scholar
  12. 12.
    A. Zanchet, A. Dorta-Urra, A. Aguado, and O. Roncero, J. Phys. Chem. C 115, 47–57 (2011).CrossRefGoogle Scholar
  13. 13.
    S. A. Varganov, R. M. Olson, M. R. Gordon, G. Mills, and H. Metiu, J. Chem. Phys. 120, 5169–5175 (2004).CrossRefGoogle Scholar
  14. 14.
    D. A. Pichugina, S. A. Nikolaev, and N. E. Kuz’menko, Superkomp. Dni Ross., 556 (2015).Google Scholar
  15. 15.
    G.-J. Kang, Zh.-Xu. Chen, Zh. Li, and X. He, J. Chem. Phys. 130, 034701 (2009).CrossRefGoogle Scholar
  16. 16.
    L. N. Sidorov, M. A. Yurovskaya, A. Ya. Borshchevskii, I. V. Trushkov, and I. N. Ioffe, Fullerenes (Ekzamen, Moscow, 2005), p. 687 [in Russian].Google Scholar
  17. 17.
    E. Azizi, Z. A. Tehrani, and Z. Jamshidi, J. Mol. Graph. Modell. 54, 80–89 (2014).CrossRefGoogle Scholar
  18. 18.
    Y. Okamoto, Chem. Phys. Lett. 420, 382–386 (2006).CrossRefGoogle Scholar
  19. 19.
    H. Song, Y. Ni, and S. Kokot, Anal. Chim. Acta 788, 24–31 (2013).CrossRefGoogle Scholar
  20. 20.
    J. Yu, X. Zhou, and C. Zhang, Mater. Lett. 92, 379–381 (2013).CrossRefGoogle Scholar
  21. 21.
    G. Wang, Z. Wang, Z. Liu, J. Xue, G. Xin, Q. Yu, J. Lian, and M. Y. Chen, Chem. Eng. J. 260, 582–589 (2015).CrossRefGoogle Scholar
  22. 22.
    D. K. Smith and M. L. Pantoya, Compos. Sci. Technol. 118, 251–256 (2015).CrossRefGoogle Scholar
  23. 23.
    Yu. V. Ioni, S. E. Lyubimov, V. A. Davankov, and S. P. Gubin, Russ. J. Inorg. Chem. 58, 392 (2013).CrossRefGoogle Scholar
  24. 24.
    M. Batzill, Surf. Sci. Rep. 67, 83–115 (2012).CrossRefGoogle Scholar
  25. 25.
    P. Giannozzi et al., J. Phys.: Condens. Matter 21, 395502 (2009).Google Scholar
  26. 26.
    T. Ozaki, Phys. Rev. B 67, 155108 (2003).CrossRefGoogle Scholar
  27. 27.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865–3868 (1996).CrossRefGoogle Scholar
  28. 28.
    J. L. Norskov and N. D. Lang, Phys. Rev. B 21, 2131–2136 (1980).CrossRefGoogle Scholar
  29. 29.
    M. J. Puska and R. M. Nieminen, Phys. Rev. B 43, 12221–12233 (1991).CrossRefGoogle Scholar
  30. 30.
    B. Hammer and J. K. Norskov, Nature 376, 238 (1995).CrossRefGoogle Scholar
  31. 31.
    Zh. Li et al., J. Chem. Phys. 137, 234704 (2012).CrossRefGoogle Scholar
  32. 32.
    A. P. Barbichev and N. A. Babushkina, in Physical Values, The Reference Book, Ed. by I. S. Grigor’ev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991), p. 1232 [in Russian].Google Scholar
  33. 33.
    Y. Zhang, O. Pluchery, L. Caillard, A.-F. Lamic-Humblot, S. Casale, Y. J. Chabal, and M. Salmeron, Nano. Lett. 15, 51–55 (2015).CrossRefGoogle Scholar
  34. 34.
    N. V. Dokhlikova, N. N. Kolchenko, M. V. Grishin, and B. R. Shub, Nanotechnol. Russ. 11, 7 (2016).CrossRefGoogle Scholar
  35. 35.
    O. V. Krylov and B. R. Shub, Nonequilibrium Processes in Catalysis (Khimiya, Moscow, 1990), p. 285 [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • N. V. Dokhlikova
    • 1
  • N. N. Kolchenko
    • 1
  • M. V. Grishin
    • 1
  • A. K. Gatin
    • 1
  • B. R. Shub
    • 1
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations