Nanotechnologies in Russia

, Volume 11, Issue 9–10, pp 617–624 | Cite as

Molecular silicasol-based barrier coatings for organic electronics

  • A. S. Sizov
  • I. B. Meshkov
  • M. Yu. Yablokov
  • E. V. Agina
  • A. A. Bessonov
  • A. M. Muzafarov
  • S. A. PonomarenkoEmail author


A solution-processable approach to designing molecular silicasol-based barrier coatings for organic electronics has been developed. The barriers are assessed by the optical calcium test and demonstrate water-vapor permeation rates of about 10–2 g m–2 day–1. Silicasols are shown to be promising for the encapsulation of organic electronics devices, for which the resulting water-vapor permeation rates are sufficient (e.g., for organic field-effect transistors).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. R. Forrest, Nature 428 (6986), 911–918 (2004).CrossRefGoogle Scholar
  2. 2.
    S. Yang, C. S. Hwang, J. I. Lee, S. M. Yoon, M. K. Ryu, K. I. Cho, S. H. K. Park, S. H. Kim, C. E. Park, and J. Jang, Appl. Phys. Lett. 98 (10), 103515 (2011).CrossRefGoogle Scholar
  3. 3.
    H. Klauk, Chem. Soc. Rev. 39 (7), 2643–2666 (2010).CrossRefGoogle Scholar
  4. 4.
    L. X. Xiao, Z. J. Chen, B. Qu, J. X. Luo, S. Kong, Q. H. Gong, and J. J. Kido, Adv. Mater. 23 (8), 926–952 (2011).CrossRefGoogle Scholar
  5. 5.
    T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, and T. W. Lee, Nat. Photon. 6 (2), 105–110 (2012).CrossRefGoogle Scholar
  6. 6.
    T. Stubhan, M. Salinas, A. Ebel, F. C. Krebs, A. Hirsch, M. Halik, and C. J. Brabec, Adv. Energy Mater. 2 (5), 532–535 (2012).CrossRefGoogle Scholar
  7. 7.
    J. Min, Y. N. Luponosov, N. Gasparini, M. Richter, A. V. Bakirov, M. A. Shcherbina, S. N. Chvalun, L. Grodd, S. Grigorian, T. Ameri, S. A. Ponomarenko, and C. J. Brabec, Adv. Energy Mater. 5 (17), 1500386 (2015).CrossRefGoogle Scholar
  8. 8.
    T. W. Kelley, L. D. Boardman, T. D. Dunbar, D. V. Muyres, M. J. Pellerite, and T. Y. P. Smith, J. Phys. Chem. B 107 (24), 5877–5881 (2003).Google Scholar
  9. 9.
    C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater. 14 (2), 99 (2002).CrossRefGoogle Scholar
  10. 10.
    H. Sirringhaus, Adv. Mater. 21 (38–39), 3859–3873 (2009).CrossRefGoogle Scholar
  11. 11.
    P. A. Bobbert, A. Sharma, S. G. J. Mathijssen, M. Kemerink, and D. M. de Leeuw, Adv. Mater. 24 (9), 1146–1158 (2012).CrossRefGoogle Scholar
  12. 12.
    Q. Xia, M. Burkhardt, and M. Halik, Org. Electron. 9 (6), 1061–1068 (2008).CrossRefGoogle Scholar
  13. 13.
    L. Torsi, A. Dodabalapur, N. Cioffi, L. Sabbatini, and P. G. Zambonin, Sens. Actuators B 77 (1–2), 7–11 (2001).CrossRefGoogle Scholar
  14. 14.
    L. H. Kim, K. Kim, S. Park, Y. J. Jeong, H. Kim, D. S. Chung, S. H. Kim, and C. E. Park, ACS Appl. Mater. Interfaces 6 (9), 6731–6738 (2014).CrossRefGoogle Scholar
  15. 15.
    D. M. de Leeuw, M. M. J. Simenon, A. R. Brown, and R. E. F. Einerhand, Synth. Met. 87 (1), 53–59 (1997).CrossRefGoogle Scholar
  16. 16.
    T. D. Anthopoulos, G. C. Anyfantis, G. C. Papavassiliou, and D. M. de Leeuw, Appl. Phys. Lett. 90 (12), 122105 (2007).Google Scholar
  17. 17.
    Z. A. Bao, A. J. Lovinger, and J. Brown, J. Am. Chem. Soc. 120 (1), 207–208 (1998).CrossRefGoogle Scholar
  18. 18.
    H. E. Katz, J. Johnson, A. J. Lovinger, and W. J. Li, J. Am. Chem. Soc. 122, 7787–7792 (2000).CrossRefGoogle Scholar
  19. 19.
    P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. Mccarty, and M. E. Thompson, Appl. Phys. Lett. 65, 2922–2924 (1994).CrossRefGoogle Scholar
  20. 20.
    C. Charton, N. Schiller, M. Fahland, A. Hollander, A. Wedel, and K. Noller, Thin Solid Films 502, 99–103 (2006).CrossRefGoogle Scholar
  21. 21.
    D. A. Spee, J. K. Rath, and R. E. I. Schropp, Thin Solid Films 575, 67–71 (2015).CrossRefGoogle Scholar
  22. 22.
    A. Perrotta, E. R. J. van Beekum, G. Aresta, A. Jagia, W. Keuning, R. M. C. M. van de Sanden, E. W. M. M. Kessels, and M. Creatore, Microporous Mesoporous Mater. 188, 163–171 (2014).CrossRefGoogle Scholar
  23. 23.
    A. P. Roberts, B. M. Henry, A. P. Sutton, C. R. M. Grovenor, G. A. D. Briggs, T. Miyamoto, A. Kano, Y. Tsukahara, and M. Yanaka, J. Membr. Sci. 208 (1–2), 75–88 (2002).CrossRefGoogle Scholar
  24. 24.
    F. L. Wong, M. K. Fung, S. L. Tao, S. L. Lai, W. M. Tsang, K. H. Kong, W. M. Choy, C. S. Lee, and S. T. Lee, J. Appl. Phys. 104 (1), 014509 (2008).CrossRefGoogle Scholar
  25. 25.
    S. Nam, H. Jeon, S. H. Kim, J. Jang, C. Yang, and C. E. Park, Org. Electron. 10 (1), 67–72 (2009).CrossRefGoogle Scholar
  26. 26.
    D. Feili, M. Schuettler, T. Doerge, S. Kammer, and T. Stieglitz, Sens. Actuators A: Phys. 120 (1), 101–109 (2005).CrossRefGoogle Scholar
  27. 27.
    C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson, M. G. Kane, I. G. Hill, M. S. Hammond, J. Campi, B. K. Greening, J. Francl, and J. West, Appl. Phys. Lett. 80 (6), 1088 (2002).CrossRefGoogle Scholar
  28. 28.
    H. Jung, T. Lim, Y. Choi, M. Yi, J. Won, and S. Pyo, Appl. Phys. Lett. 92 (16), 163504 (2008).CrossRefGoogle Scholar
  29. 29.
    X. Yan, H. Wang, and D. Yan, Thin Solid Films 515 (4), 2655–2658 (2006).CrossRefGoogle Scholar
  30. 30.
    G. L. Graff, R. E. Williford, and P. E. Burrows, J. Appl. Phys. 96 (4), 1840–1849 (2004).CrossRefGoogle Scholar
  31. 31.
    M. S. Weaver, L. A. Michalski, K. Rajan, M. A. Rothman, J. A. Silvernail, J. J. Brown, P. E. Burrows, G. L.Graff, M. E. Gross, P. M. Martin, M. Hall, E. Mast, C. Bonham, W. Bennett, and M. Zumhoff, Appl. Phys. Lett. 81, 2929–2931 (2002).CrossRefGoogle Scholar
  32. 32.
    RF Patent No. 2140393 (1999).Google Scholar
  33. 33.
    N. V. Voronina, I. B. Meshkov, V. D. Myakushev, N. V. Demchenko, T. V. Laptinskaya, and A. M. Muzafarov, Nanotechnol. Russ. 3, 321 (2008).CrossRefGoogle Scholar
  34. 34.
    N. V. Voronina, I. B. Meshkov, V. D. Myakushev, T. V. Laptinskaya, V. S. Papkov, M. I. Buzin, M. N. Il’ina, A. N. Ozerin, and A. M. Muzafarov, J. Polym. Sci. Polym. Chem. 48 (19), 4310–4322 (2010).CrossRefGoogle Scholar
  35. 35.
    T. Sekitani and T. Someya, Mater Today 14 (9), 398–407 (2011).CrossRefGoogle Scholar
  36. 36.
    E. V. Agina, A. S. Sizov, M. Y. Yablokov, O. V. Borshchev, A. A. Bessonov, M. N. Kirikova, M. J. A. Bailey, and S. A. Ponomarenko, ACS Appl. Mater. Interface 7 (22), 11755–11764 (2015).CrossRefGoogle Scholar
  37. 37.
    D. J. Higgs, M. J. Young, J. A. Bertrand, and S. M. George, J. Phys. Chem. C 118, 29322–29332 (2014).CrossRefGoogle Scholar
  38. 38.
    “Reel-to-reel vacuum metallization,” in Organic Electronics: Materials, Manufacturing, and Applications, Ed. by H. Klauk (Wiley-VCH, 2006), Chap. 8.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. S. Sizov
    • 1
  • I. B. Meshkov
    • 1
  • M. Yu. Yablokov
    • 1
  • E. V. Agina
    • 1
  • A. A. Bessonov
    • 2
  • A. M. Muzafarov
    • 1
    • 3
  • S. A. Ponomarenko
    • 1
    • 4
    Email author
  1. 1.Enikolopov Institute of Synthetic Polymeric MaterialsRussian Academy of SciencesMoscowRussia
  2. 2.Nokia TechnologiesCambridgeUK
  3. 3.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia
  4. 4.Chemistry DepartmentMoscow State UniversityMoscowRussia

Personalised recommendations