Nanotechnologies in Russia

, Volume 11, Issue 9–10, pp 553–561 | Cite as

On the rheological behavior of nanoparticles in the force field of the solid surface: Nanotechnological aspects

  • V. M. Samsonov
  • A. G. Bembel
  • T. E. SamsonovEmail author
  • I. V. Popov
  • S. A. Vasilyev


The spreading of solid Cu nanoparticles (1–10 nm in diameter) on the (100) Cu surface and solid Au nanoparticles on the (100) Au face is simulated via molecular dynamics. The results for the Cu (nanoparticle)/( 100) Cu system are compared with the available experimental data for Cu microparticles (0.1–10 μm) spreading on the polycrystalline Cu surface. The solid-state spreading phenomenon is found to play an important role in many natural and technological processes. Some potential applications in nanotechnology and restrictions in the operation characteristics of nanosized units and nanomaterials are discussed as well.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. D. Summ and Yu. V. Goryunov, Physicochemical Basis of Wetting and Spreading (Khimiya, Moscow, 1976) [in Russian].Google Scholar
  2. 2.
    B. D. Summ and V. M. Samsonov, “Concepts of Rehbinder’s school and modern theories of spreading,” Colloids Surf. 160, 63–78 (1999).CrossRefGoogle Scholar
  3. 3.
    V. M. Samsonov, S. S. Kharechkin, and R. P. Barbasov, “Comparative molecular dynamics study of nanocrystallization processes in one-component and binary systems,” Izv. Akad. Nauk, Ser. Fiz. 70, 1011–1015 (2006).Google Scholar
  4. 4.
    V. M. Samsonov, S. S. Kharechkin, S. L. Gafner, L. V. Redel, and Yu. Ya. Gafner, “Molecular dynamics study of the melting and crystallization of nanoparticles,” Crystallogr. Rep. 54, 526 (2009).CrossRefGoogle Scholar
  5. 5.
    S. L. Gafner, L. V. Redel, Zh. V. Golovenko, Yu. Ya. Gafner, V. M. Samsonov, and S. S. Kharechkin, “Structural transitions in small nickel clusters,” JETP Lett. 89, 364 (2009).CrossRefGoogle Scholar
  6. 6.
    V. M. Samsonov, S. S. Kharechkin, S. L. Gafner, L. V. Redel, Yu. Ya. Gafner, and Zh. V. Golovenko, “On structural transitions in nanoparticles,” Bull. Russ. Acad. Sci.: Phys. 74, 673 (2010).CrossRefGoogle Scholar
  7. 7.
    N. Yu. Sdobnyakov, D. N. Sokolov, V. M. Samsonov, and P. V. Komarov, “Gupta multiparticle potential study of the hysteresis of the melting and solidification of gold nanoclusters,” Russ. Metall. 2012, 209 (2015).CrossRefGoogle Scholar
  8. 8.
    V. M. Samsonov, A. G. Bembel, O. V. Shakulo, and S. A. Vasilyev, “Comparative molecular dynamics study of melting and crystallization of Ni and Au nanoclusters,” Crystallogr. Rep. 59, 580 (2014).CrossRefGoogle Scholar
  9. 9.
    T. Castro, R. Reifenberger, E. Choi, and R. P. Andres, “Size-dependent melting temperature of individual nanometer-sized metallic clusters,” Phys. Rev. B 42, 8548–8556 (1990).CrossRefGoogle Scholar
  10. 10.
    Yue. Qi, T. Cagin, W. L. Johnson, and W. A. Goddard, “Melting and crystallization in Ni nanoclusters: the mesoscale regime,” J. Chem. Phys. 115, 385–394 (2001).CrossRefGoogle Scholar
  11. 11.
    A. G. Bembel, E. G. Zubov, M. Yu. Pushkar, and V. M. Samsonov, “Molecular dynamical simulation of the size dependence of nanocrystal melting temperature,” in Proceedings of the 6th Internatonal Conference on Single Crystal Growth and Heat and Mass Transfer ICSC-2005 (GNTs RF-FEI, Obninsk, 2005), Vol. 3, pp. 552–555.Google Scholar
  12. 12.
    V. M. Samsonov, S. A. Vasilyev, I. V. Talyzin, and Yu. A. Ryzhkov, “On reasons for the hysteresis of melting and crystallization of nanoparticles,” JETP Lett. 103, 94 (2016).CrossRefGoogle Scholar
  13. 13.
    G. C. Kuczynski, “Self-diffusion in sintering of metallic particles,” Trans. AIME 185, 169–178 (1949).Google Scholar
  14. 14.
    J. M. Missaen, R. Voytovych, B. Gilles, and N. Eustathopoulos, “Solid state spreading in the Cu/Cu system,” J. Mater. Sci. 40, 2377–2381 (2005).CrossRefGoogle Scholar
  15. 15.
    G. Schmid and B. Corain, “Nanopracticulated gold: syntheses, structures, electronics, and reseach,” Eur. J. Inorg. Chem., No. 17, 3081–3098 (2003).CrossRefGoogle Scholar
  16. 16.
    A. G. Bembel, “Molecular dynamical modeling structural and phase transformations in free nanocluster and nanoparticles on the solid surface,” Cand. Sci. (Phys. Math.) Dissertation (Tver, 2011).Google Scholar
  17. 17.
    F. Cleri and V. Rosato, “Tight-binding potentials for transition metals and alloys,” Phys. Rev. B 48, 22–33 (1993).CrossRefGoogle Scholar
  18. 18.
    M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1990).Google Scholar
  19. 19.
    V. M. Samsonov, “Alternative approaches to determination of radius and other geometrical parameters of nanoparticles,” in Physicochemical Aspects of Cluster, Nanostructure and Nanomaterial Study, Interschool Collection of Scientific Articles, Ed. by V. M. Samsonov and N. Yu. Sdobnyakov (Tver. Gos. Univ., Tver, 2015), No. 7, pp. 413–424.Google Scholar
  20. 20.
    V. P. Skripov and V. P. Koverda, Spontaneous Crystallization of Supercooled Liquids (Nauka, Moscow, 1984) [in Russian].Google Scholar
  21. 21.
    G. S. Zhdanov, “Melting and solidification kinetics of island metallic films,” Izv. Akad. Nauk, Ser. Fiz. 41, 1004–1009 (1977).Google Scholar
  22. 22.
    R. Kofman, P. Cheyssac, Y. Lereach, and A. Stella, “Melting of clusters approaching 0D,” Eur. Phys. J. D 9, 441–444 (1999).CrossRefGoogle Scholar
  23. 23.
    V. M. Samsonov and A. G. Bembel, “The hysteresis of melting and crystallization of nanoclusters: thermodynamics and computer experiment,” Yad. Fiz. Inzhin. 4, 578–589 (2013).Google Scholar
  24. 24.
    N. N. Medvedev, Voronoi-Delaunay Method for Non- Crystalline Structures (Sib. Otdel. RAN, Novosibirsk, 2000) [in Russian].Google Scholar
  25. 25.
    W. Polak and A. Patrykiejew, “Local structures in medium-sized Lennard-Jones clusters: Monte Carlo simulations,” Phys. Rev. B 67, 115402-1–11 (2003).CrossRefGoogle Scholar
  26. 26.
    Physical Values, The Reference Book, Ed. by I. S. Grigor’ev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991) [in Russian].Google Scholar
  27. 27.
    S. P. Chizhik, N. T. Gladkikh, and V. I. Larin, “The size effects in wetting in ultradispersed systems,” Poverkhn. Fiz., Khim., Mekh., No. 12, 111–121 (1985).Google Scholar
  28. 28.
    Nanotechnology Research Directions: Vision for Nanotechnology in the Next Decade, Ed. by M. C. Roco, S. Williams, and P. Alivisatos (Springer, Dordrecht, 2000), p. 38.Google Scholar
  29. 29.
    Ch. Kittel, Introduction to Solid State Physics (Wiley, Chapman Hall, New York, London, 1953).Google Scholar
  30. 30.
    G. Medeiros-Ribeiro, A. M. Bratkovski, T. I. Kamins, A. A. Ohlberg, and R. S. Williams, “Shape transition of germanium nanocrystals on a silicon (001) surface from pyramids to domes,” Science 279, 353–355 (1998).CrossRefGoogle Scholar
  31. 31.
    Yu. V. Naidich, V. M. Perevertailo, and N. F. Grigorenko, Capillary Phenomena in Crystal Growth and Melting Processes (Nauk. Dumka, Kiev, 1983) [in Russian].Google Scholar
  32. 32.
    C. V. Thompson, “Solid-state dewetting of thin films,” Ann. Rev. Mater. Res. 42, 399–434 (2012).CrossRefGoogle Scholar
  33. 33.
    J. P. Hirth and K. L. Moazed, “Nucleation processes in thin film formation,” in Physics of Thin Films, Ed. by G. Hass and R. E. Thun (Academic, New York, 1967), Vol. 4, p. 137.Google Scholar
  34. 34.
    V. M. Ievlev, A. V. Bugakov, and V. I. Trofimov, Growth and Substructure of Condensed Films (Voronezh. Gos. Tekhnol. Univ., Voronezh, 2000), p. 20 [in Russian].Google Scholar
  35. 35.
    V. M. Samsonov, Yu. V. Kuznetsova, and E. V. Dyakova, “Fractal properties of aggregates of metal nanoclusters on solid surface,” Tech. Phys. 61, 227 (2016).CrossRefGoogle Scholar
  36. 36.
    J. W. Matthews, “Evaporated single-crystal films,” in Physics of Thin Films, Ed. by G. Hass and R. E. Thun (Academic, New York, 1967), Vol. 4, p. 191.Google Scholar
  37. 37.
    L. I. Maissel, “The deposition of thin films by cathode sputtering,” in Physics of Thin Films, Ed. by G. Hass and R. E. Thun (Academic, New York, 1966), Vol. 3, p. 61.Google Scholar
  38. 38.
    A. D. Zimon, Adhesion of Films and Coverings (Khimiya, Moscow, 1977) [in Russian].Google Scholar
  39. 39.
    A. D. Zimon, Adhesion of Dust and Powder (Khimiya, Moscow, 1976) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • V. M. Samsonov
    • 1
  • A. G. Bembel
    • 1
  • T. E. Samsonov
    • 1
    Email author
  • I. V. Popov
    • 1
  • S. A. Vasilyev
    • 1
  1. 1.Tver State UniversityTverRussia

Personalised recommendations