Nanotechnologies in Russia

, Volume 11, Issue 9–10, pp 646–652 | Cite as

Influence of orally introduced silver nanoparticles on content of essential and toxic trace elements in organism

  • I. V. Gmoshinski
  • A. A. Shumakova
  • V. A. Shipelin
  • G. Yu. Maltsev
  • S. A. Khotimchenko


Nanoscale colloidal silver (NCS) is one of the most popular products of nanotechnology and is widely used in cosmetics, food supplements, and other types of consumer products. The aim of this work is to study the influence of NCSs orally introduced into rats during an experiment lasting 92 days on some indicators of homeostasis of essential and toxic trace elements. The Argovit-C NCSs produced by Vector Vita LTD, Novosibirsk, Russia with silver (Ag) nanoparticles of the diameter in the range of 5-80 nm according to transmission electron microscopy and dynamic laser light scattering. The drug is introduced into growing male Wistar rats in doses ranging from 0.1 to 10 mg/kg body weight (b.w.) for 1 month by gavage and then with a diet consumed for 62 days. The control animals receive deionized water or an aqueous solution of the stabilizer polyvinylpyrrolidone. The content of Ag, cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn) in the liver, kidneys, and spleen is determined by mass spectrometry with inductively coupled plasma; selenium (Se) in serum and urine is measured by spectrofluorimetric method and glutathione peroxidase activity by the enzymatic spectrophotometric method. The dose-dependent accumulation of Ag in the animal liver at a dosage ranging 0.1–10 mg/kg b.w. and kidney and spleen in the range of 0.1–1 mg/kg b.w. is revealed. A significant decrease in the content of Cu in the kidneys; a decrease in Zn and Co content and increase in Mn content in the liver; and an increase in Cd, Cr, and Ni in spleen of animals receiving NCS at various doses are found. A significant positive correlation is found between the levels of Ag and Cd, Ni, Cr in the spleen, and a negative one is found between Ag and Cu in the kidneys. Indicators of Se provision (urinary excretion, the content in the blood plasma, the activity of glutathione peroxidase) are significantly lower in rats receiving NCS at a dose of 1.0–10 mg/kg b.w. Thus, NCSs, entering the body through the gastrointestinal tract at a dose of silver of at least 1 mg/kg b.w. may affect the homeostasis of essential and toxic trace elements. The antagonism of Ag (as part of the NCS) and Se in the composition of the diet should be taken into account in assessing the safety of widely used food supplements–sources of colloidal Ag.


NCS, nanoscale colloidal silver PVP, polyvinyl pyrrolidone EDTA ethylenediaminetetraacetate b.w. body weight and r, Pearson correlation coefficient 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Fabrega, S. N. Luoma, C. R. Tyler, T. S. Galloway, and J. R. Lead, “Silver nanoparticles: behaviour and effects in the aquatic environment,” Environ. Int. 37 (2), 517–531 (2011).CrossRefGoogle Scholar
  2. 2.
    M. van der Zande, R. J. Vandebriel, E. V. Doren, E. Kramer, Z. H. Rivera, C. S. Serrano-Rojero, E. R. Gremmer, J. Mast, R. J. B. Peters, P. C. H. Hollman, P. J. M. Hendriksen, H. J. P. Marvin, A. A. C. M. Peijnenburg, and Y. Bouwmeester, “Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure,” ACS Nano 6 (8), 7427–7442 (2012).CrossRefGoogle Scholar
  3. 3.
    N. Lubick, “Nanosilver toxicity: ions, nanoparticles–or both?,” Environ. Sci. Technol. 42 (23), 8617 (2008).CrossRefGoogle Scholar
  4. 4.
    Z. M. Xiu, Q. B. Zhang, Y. L. Puppala, V. L. Colvin, and P. J. J. Alvarez, “Negligible particle-specific antibacterial activity of silver nanoparticles,” Nano Lett. 12 (8), 4271–4275 (2012).CrossRefGoogle Scholar
  5. 5.
    O. Choi, K. K. Deng, N. J. Kim, L. Ross, R. Y. Surampalli, and Z. Q. Hu, “The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth,” Water Res. 42 (12), 3066–3074 (2008).CrossRefGoogle Scholar
  6. 6.
    F. Benetti, L. Bregoli, I. Olivato, and E. Sabbioni, “Effects of metal(loid)-based nanomaterials on essential element homeostasis: the central role of nanometallomics for nanotoxicology,” Metallomics 6 (4), 729–747 (2014). doi 10.1039/c3mt00167aCrossRefGoogle Scholar
  7. 7.
    A. A. Shumakova, V. A. Shipelin, Yu. S. Sidorova, E. N. Trushina, O. K. Mustafina, S. M. Pridvorova, I. V. Gmoshinskii, and S. A. Khotimchenko, “Toxicological evaluation of nanosized colloidal silver, stabilized with polyvinylpyrrolidone. I. Characterization of nanomaterial, integral, hematological parameters, level of thiol compounds and liver cell apoptosis,” Vopr. Pitan. 8 (6), 46 (2015).Google Scholar
  8. 8.
    N. A. Golubkina, “Fluorimetric method for selenium determination,” Zh. Anal. Khim. 50 (8), 492 (1995).Google Scholar
  9. 9.
    Biochemical Research Methods in Clinic, The Handbook, Ed. by A. A. Pokrovskii (Meditsina, Moscow, 1969), p. 652 [in Russian].Google Scholar
  10. 10.
    G. Yu. Mal’tsev and N. V. Tyshko, “Methods for determination of glutathione and glutathione peroxidase activity in erythrocytes,” Gig. Sanit., No. 2, 69 (2002).Google Scholar
  11. 11.
    Y. S. Kim, J. S. Kim, H. S. Cho, D. S. Rha, J. M. Kim, J. D. Park, B. S. Choi, R. Lim, H. K. Chang, Y. H. Chung, I. H. Kwon, J. Jeong, B. S. Han, and I. J. Yu, “Twentyeight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in spraguedawley rats,” Inhal. Toxicol. 20 (6), 575–583 (2008).CrossRefGoogle Scholar
  12. 12.
    V. A. Demin, I. V. Gmoshinsky, V. F. Demin, A. A. Anciferova, Yu. P. Buzulukov, S. A. Khotimchenko, and V. A. Tutelyan, “Modeling interorgan distribution and bioaccumulation of engineered nanoparticles (using the example of silver nanoparticles),” Nanotechnol. Russ. 10 (3–4), 288–296 (2015).CrossRefGoogle Scholar
  13. 13.
    A. P. Avtsyn, A. A. Zhavoronkov, M. A. Rish, and L. S. Strochkova, Human Microelementosis (Meditsina, Moscow, 1991) [in Russian].Google Scholar
  14. 14.
    J. Bertinato, L. Cheung, R. Hoque, and L. J. Plouffe, “Ctr1 transports silver into mammalian cells,” J. Trace Elem. Med. Biol. 24 (3), 178–184 (2010).CrossRefGoogle Scholar
  15. 15.
    J. T. Rubino, P. Riggs-Gelasco, and K. J. Franz, “Methionine motifs of copper transport proteins provide general and flexible thioether-only binding sites for Cu(I) and Ag(I),” J. Biol. Inorg. Chem. 15 (7), 1033–1049 (2010).CrossRefGoogle Scholar
  16. 16.
    V. A. Tutel’yan, V. A. Knyazhev, S. A. Khotimchenko, and N. A. Golubkina, Selenium in Human Body: Metabolism, Antioxidant Properties, Role in Carcinogenesis (Ross. Akad. Med. Nauk, Moscow, 2002) [in Russian].Google Scholar
  17. 17.
    M. Srivastava, S. Singh, and W. T. Self, “Exposure to silver nanoparticles inhibits selenoprotein synthesis and the activity of thioredoxin reductase,” Environ. Health Perspect. 120 (1), 56–61 (2012).CrossRefGoogle Scholar
  18. 18.
    K. M. Stepien and A. Taylor, “Colloidal silver ingestion with copper and caeruloplasmin deficiency,” Ann. Clin. Biochem. 49 (3), 300–301 (2012).CrossRefGoogle Scholar
  19. 19.
    R. Takahashi, K. Edashige, E. F. Sato, M. Inoue, T. Matsuno, and R. Utsumi, “Luminol chemiluminescence and active oxygen generation by activated neutrophils,” Arch. Biochem. Biophys. 285 (2), 325–330 (1991).CrossRefGoogle Scholar
  20. 20.
    A. N. Mayanskii and D. N. Mayanskii, Essays on Neutrophils and Macrophages, Ed. by V. P. Kaznacheev (Nauka, Novosibirsk, 1983) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • I. V. Gmoshinski
    • 1
  • A. A. Shumakova
    • 1
  • V. A. Shipelin
    • 1
  • G. Yu. Maltsev
    • 1
  • S. A. Khotimchenko
    • 1
  1. 1.Science Scientific Research Institute of NutritionMoscowRussia

Personalised recommendations