Advertisement

Nanotechnologies in Russia

, Volume 11, Issue 7–8, pp 444–453 | Cite as

Preparation of chemosensor materials based on silica nanoparticles with covalently anchored fluorophores by inkjet printing

  • D. S. IonovEmail author
  • G. A. Yurasik
  • S. P. Molchanov
  • V. A. Sazhnikov
  • V. M. Aristarkhov
  • Yu. N. Kononevich
  • I. B. Meshkov
  • N. V. Voronina
  • A. M. Muzafarov
  • M. V. Alfimov
Article

Abstract

Samples of sensor layers containing a mixture of spherical silica gel microparticles and spherical macromolecular silica sol nanoparticles have been prepared by inkjet printing. The average diameter of microparticles is 5 μm; nanoparticles about 100 nm in diameter contain covalently anchored fluorophore, dibenzoylmethane boron difluoride (DBMBF2), on the surface. The microstructure of the layers is shown to considerably affect the availability of the fluorophore indicator for gas-phase analyte molecules of the methylbenzene group. The sensitivity of the sensor layers is shown to reach 0.5 ppm with a response time of about 100 s.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Clément et al., “Deep cavitand self-assembled on Au NPs-MWCNT as highly sensitive benzene sensing interface,” Adv. Funct. Mater. 25 (26), 4011–4020 (2015).CrossRefGoogle Scholar
  2. 2.
    N. Andreeva et al., “High sensitive detection of volatile organic compounds using superhydrophobic quartz crystal microbalance,” Sens. Actuators B 164 (1), 15–21 (2012).CrossRefGoogle Scholar
  3. 3.
    X. Fan and B. Du, “Selective detection of trace p-xylene by polymer-coated QCM sensors,” Sens. Actuators B 166–167, 753–760 (2012).CrossRefGoogle Scholar
  4. 4.
    M. Nakagawa and N. Yamashita, “Cataluminescencebased gas sensors,” in Frontiers in Chemical Sensors, Ed.by G. Orellana and M. C. Moreno-Bondi (Springer, Heidelberg, Berlin, 2005), Vol. 3, pp. 93–132.CrossRefGoogle Scholar
  5. 5.
    J. D. A. Espinoza et al., “Flexible optical chemical sensor platform for BTX,” Proc. Eng. 47, 607–610 (2012).CrossRefGoogle Scholar
  6. 6.
    I. Sayago et al., “New sensitive layers for surface acoustic wave gas sensors based on polymer and carbon nanotube composites,” Sens. Actuators B 175, 67–72 (2012).CrossRefGoogle Scholar
  7. 7.
    F. Chávez et al., “Sensing performance of palladiumfunctionalized WO3 nanowires by a drop-casting method,” Appl. Surf. Sci. 275, 28–35 (2013).CrossRefGoogle Scholar
  8. 8.
    T. Baimpos et al., “Selective detection of hazardous VOCs using zeolite/metglas composite sensors,” Sens. Actuators A 186, 21–31 (2012).CrossRefGoogle Scholar
  9. 9.
    V. A. Sazhnikov, V. N. Kopysov, V. M. Aristarkhov, E. S. Shibneva, A. G. Mironchik, E. V. Fedorenko, and M. V. Alfimov, “Fluorescence properties and conformation of dibenzoylmethanatoboron difluoride in solutions,” High Energy Chem. 45, 501 (2011).CrossRefGoogle Scholar
  10. 10.
    V. A. Sazhnikov, Yu. N. Kononevich, A. M. Muzafarov, and M. V. Alfimov, “Dibenzoylmethanatoboron difluoride exciplexes with pyridine,” Khim. Vys. Energ. 47 (3), 244 (2013).Google Scholar
  11. 11.
    V. A. Sazhnikov, V. M. Aristarkhov, A. G. Mirochnik, E. V. Fedorenko, and M. V. Alfimov, “Fluorescence quenching of silica gel-adsorbed (dibenzoylmethanato) boron difluoride by polar solvent vapor,” Dokl. Phys. Chem. 437, 35 (2011).CrossRefGoogle Scholar
  12. 12.
    D. S. Ionov, V. A. Sazhnikov, G. A. Yurasik, A. V. Antonov, Yu. N. Kononevich, and M. V. Alfimov, “Model of the formation of dibenzoylmethanatoboron difluoride exciplexes with aromatic hydrocarbons on silica surface,” High Energy Chem. 49, 183 (2015).CrossRefGoogle Scholar
  13. 13.
    J. D. Arias Espinoza et al., “Gas response behaviour and photochemistry of borondiketonate in acrylic polymer matrices for sensing applications,” J. Fluoresc. 24 (6), 1735–1744 (2014).CrossRefGoogle Scholar
  14. 14.
    M. V. Alfimov, A. A. Bagatur’yants, A. A. Safonov, A. V. Scherbinin, K. G. Vladimirova, S. A. Belousov, M. V. Bogdanova, I. A. Valuev, A. V. Deinega, Yu. E. Lozovik, and B. V. Potapkin, “Multiscale computer design of photonic crystal based materials for optical chemosensors,” Nanotechnol. Russ. 5, 250 (2010).CrossRefGoogle Scholar
  15. 15.
    V. A. Sazhnikov, A. M. Muzafarov, V. N. Kopysov, V. M. Aristarkhov, Yu. N. Kononevich, I. B. Meshkov, N. V. Voronina, and M. V. Alfimov, “Silica nanoparticles with covalently attached fluorophore as selective analyte-responsive supramolecular chemoreceptors,” Nanotechnol. Russ. 7, 6 (2012).CrossRefGoogle Scholar
  16. 16.
    A. A. Khlebunov, D. S. Ionov, P. V. Komarov, V. M. Aristarkhov, V. A. Sazhnikov, A. N. Petrov, and M. V. Alfimov, “An experimental system for investigating the characteristics of optical sensor materials,” Instrum. Exp. Tech. 52, 132 (2009).CrossRefGoogle Scholar
  17. 17.
    V. A. Sazhnikov, V. P. Aristarkhov, A. A. Safonov, A. A. Bagatur’yants, A. G. Mirochnik, E. V. Fedorenko, and M. V. Alfimov, “Fluorescence spectra and structure of the difluoro(dibenzoylmethanato)boron monomers and dimers absorbed on silica gel,” High Energy Chem. 45, 315 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • D. S. Ionov
    • 1
    Email author
  • G. A. Yurasik
    • 1
  • S. P. Molchanov
    • 1
  • V. A. Sazhnikov
    • 1
  • V. M. Aristarkhov
    • 1
  • Yu. N. Kononevich
    • 2
  • I. B. Meshkov
    • 3
  • N. V. Voronina
    • 3
  • A. M. Muzafarov
    • 2
    • 3
  • M. V. Alfimov
    • 1
  1. 1.Photochemictry Research CenterRussian Academy of SciencesMoscowRussia
  2. 2.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia
  3. 3.Enikolopov Institute of Synthetic Polymeric MaterialsRussian Academy of SciencesMoscowRussia

Personalised recommendations