Nanotechnologies in Russia

, Volume 11, Issue 1–2, pp 7–11 | Cite as

Electron delocalization in heterogeneous AunHm systems

  • N. V. Dokhlikova
  • N. N. Kolchenko
  • M. V. Grishin
  • B. R. Shub


We studied the size effects in homogeneous Aun nanoclusters (n = 11–21, 31–37) and a heterogeneous “planar” AunHm nanocluster (n = 13, 31, m = 1–12, 1–6) by computer simulation in the electron density functional approximation. The correlation between the features of size effects on the physicochemical properties of heterogeneous AunHm nanoclusters and a sequence of electronic magic numbers demonstrates a delocalized nature of occupied electronic states with near-Fermi energy.


Magic Number Gold Cluster Gold Atom Gold Nanoclusters Silicon Hydride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Fujitani, I. Nakamura, T. Akita, M. Okumura, and M. Haruta, Angew. Chem., Int. Ed. Engl. 48, 9515–9518 (2009).CrossRefGoogle Scholar
  2. 2.
    M. Turner, V. B. Golovko, H. O. P. Vaughan, P. Abdulkin, A. Berenguer-Murcia, M. S. Tikhov, B. F. G. Johnson, and R. M. Lambert, Nature 454, 981–984 (2008).CrossRefGoogle Scholar
  3. 3.
    L. Barrio, P. Liu, and J. A. Rodríguez, J. Chem. Phys. 125, 164715 (2006).CrossRefGoogle Scholar
  4. 4.
    L. Barrio, P. Liu, and J. A. Rodríguez, J. Phys. Chem. C 111, 19001–19008 (2007).CrossRefGoogle Scholar
  5. 5.
    P. Giannozzi et al., J. Phys.: Condens. Matter 21, 395502 (2009).Google Scholar
  6. 6.
    T. Ozaki and H. Kino. “Numerical atomic basis orbitals from H to Kr,” Phys. Rev. B 69, 195113 (2004).CrossRefGoogle Scholar
  7. 7.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865–3868 (1996).CrossRefGoogle Scholar
  8. 8.
    K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979).CrossRefGoogle Scholar
  9. 9.
    J. Mansikka-aho et al., Phys. Rev. B 46 (19), 12649 (1992).CrossRefGoogle Scholar
  10. 10.
    A. H. Larsen, J. Kleis, K. S. Thygesen, and K. W. Jacobsen, Phys. Rev. B 84, 245429 (2011).CrossRefGoogle Scholar
  11. 11.
    B. Kiran et al., J. Chem. Phys 125, 133204 (2006).CrossRefGoogle Scholar
  12. 12.
    S. A. Nikolaev, D. Pichugina, and D. F. Mukhamedzyanova, Gold Bull. 45, 221–231 (2012).CrossRefGoogle Scholar
  13. 13.
    S. N. Lanin, D. A. Pichugina, A. F. Shestakov, V. V. Smirnov, S. A. Nikolaev, K. S. Lanina, A. Yu. Vasil’kov, Fam Tien Zung, and A. V. Beletskaya, Russ. J. Phys. Chem. A 84 (12), 2133–2142 (2010).Google Scholar
  14. 14.
    D. A. Pichugina, S. A. Nikolaev, D. F. Mukhametzyanova, and N. E. Kuz’menko, Russ. J. Phys. Chem. A 88 (6), 959–964 (2014).CrossRefGoogle Scholar
  15. 15.
    P. Pyykko, Angew. Chem., Int. Ed. Engl. 43, 4412 (2004).CrossRefGoogle Scholar
  16. 16.
    H. Hakkinen, Chem. Soc. Rev. 37, 1847–1859 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • N. V. Dokhlikova
    • 1
  • N. N. Kolchenko
    • 1
  • M. V. Grishin
    • 1
  • B. R. Shub
    • 1
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations