Advertisement

Nanotechnologies in Russia

, Volume 10, Issue 11–12, pp 888–895 | Cite as

Nanocomposites based on polyethylene and modified silica phase

  • N. I. Nikonorova
  • E. S. TrofimchukEmail author
  • I. B. Meshkov
  • A. L. Volynskii
  • N. F. Bakeev
  • A. M. Muzafarov
Article
  • 30 Downloads

Abstract

Polymer nanocomposites based on solvent-crazed porous matrices of polyethylene of high density and modified phases of silica with a second component homogeneously distributed over the volume of the polymer have been obtained. It is shown that the content of the silica phase can be varied within wide limits; the maximum degree of filling amounted to about 50 wt %. The thermal stability of nanocomposites is studied. It is found that it depends on the content of solid filler and chemical composition of silica phases. When the content of the second component exceeds 20 wt %, the retention of the sample’s geometric shape at temperatures above the melting temperature of the polymer matrix is observed, which indicates the appearance of a framework structure of silica. The sorption properties of the composites and porous phase of silica, which is formed after removing the polymer matrix, have been studied. It is found that the composites practically do not absorb nitrogen under the conditions of low-temperature sorption. The specific surface area of porous silicon residuals amounted to 70–130 m2/g.

Keywords

Polymer Matrix Sorption Property Silica Phase Synthetic Polymer Material Initial Precursor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. R. Paul and L. M. Robeson, Polymer 49 (15), 3187–3204 (2008).CrossRefGoogle Scholar
  2. 2.
    S. Kangoa, S. Kalia, A. Celli, J. Njuguna, Y. Habibi, and R. Kumar, Progress Polym. Sci. 38 (8), 1232–1261 (2013).CrossRefGoogle Scholar
  3. 3.
    Polymer Nanocomposites, Ed. by Y.-W. Mai and Z.-Z. Yu (Woodhead, Cambridge, UK, 2006).Google Scholar
  4. 4.
    X. Zhu, C. Melian, Q. Dou, K. Peter, D. E. Demco, M. Möller, D. V. Anokhin, J.-M. le Meins, and D. A. Ivanov, Macromolecules 43 (14), 6067–6074 (2010).CrossRefGoogle Scholar
  5. 5.
    A. L. Volynskii, N. F. Bakeev, N. I. Nikonorova, E. S. Trofimchuk, E. A. Nesterova, A. M. Muzafarov, and A. V. Olenin, RF Patent No. 2324931 (2006).Google Scholar
  6. 6.
    E. S. Trofimchuk, N. I. Nikonorova, E. A. Nesterova, D. K. Mal’tsev, S. A. Yakukhnov, M. N. Inozemtseva, A. L. Volynskii, and N. F. Bakeev, Nanotechnol. Russ. 7, 352 (2012).CrossRefGoogle Scholar
  7. 7.
    A. K. Mishra, S. Bose, T. Kuila, N. H. Kim, and J. H. Lee, Progress Polym. Sci. 37 (6), 842–869 (2012).CrossRefGoogle Scholar
  8. 8.
    A. S. Gruzd, E. S. Trofimchuk, N. I. Nikonorova, E. A. Nesterova, I. B. Meshkov, M. O. Gallyamov, and A. R. Khokhlov, Int. J. Hydrogen Energy 38 (10), 4132–4143 (2013).CrossRefGoogle Scholar
  9. 9.
    A. L. Volynskii and N. F. Bakeev, Role of Surface Phenomena in Structural-Mechanical Behavior of Solid Polymers (Fizmatlit, Moscow, 2014) [in Russian].Google Scholar
  10. 10.
    A. Y. Yarysheva, E. G. Rukhlya, L. M. Yarysheva, D. V. Bagrov, A. L. Volynskii, and N. F. Bakeev, Eur. Polym. J. 66, 458–469 (2015).CrossRefGoogle Scholar
  11. 11.
    A. L. Volynskii, E. S. Trofimchuk, N. I. Nikonorova, and N. F. Bakeev, Russ. J. Gen. Chem. 72, 536 (2002).CrossRefGoogle Scholar
  12. 12.
    P. Goel, M. Möller, and O. Weichold, Chem. Mater. 21 (14), 3036–3038 (2009).CrossRefGoogle Scholar
  13. 13.
    C. Toncelli, O. V. Arzhakova, A. Dolgova, A. L. Volynskii, N. F. Bakeev, J. P. Kerry, and D. B. Papkovsky, Anal. Chem. 86 (3), 1917–1923 (2014).CrossRefGoogle Scholar
  14. 14.
    E. S. Trofimchuk, E. A. Nesterova, I. B. Meshkov, N. I. Nikonorova, A. M. Muzafarov, and N. Ph. Bakeev, Macromolecules 40 (25), 9111–9115 (2007).CrossRefGoogle Scholar
  15. 15.
    E. S. Trofimchuk, N. I. Nikonorova, E. V. Semenova, E. A. Nesterova, A. M. Muzafarov, I. B. Meshkov, V. V. Kazakova, A. L. Volynskii, and N. F. Bakeev, Nanotechnol. Russ. 3, 201 (2008).CrossRefGoogle Scholar
  16. 16.
    E. S. Trofimchuk, N. I. Nikonorova, E. A. Nesterova, A. M. Muzafarov, I. B. Meshkov, A. L. Volynskii, and N. F. Bakeev, Nanotechnol. Russ. 4, 736 (2009).CrossRefGoogle Scholar
  17. 17.
    V. V. Kazakova, E. A. Rebrov, V. B. Myakushev, T. V. Strelkova, A. N. Ozerin, L. A. Ozerina, T. B. Chenskaya, S. S. Sheiko, E. Yu. Sharipov, and A. M. Muzafarov, ACS Symp. Ser. 729 (34), 503–515 (2000).CrossRefGoogle Scholar
  18. 18.
    A. Yu. Yarysheva, D. V. Bagrov, E. G. Rukhlya, L.M. Yarysheva, A. L. Volynskii, and N. F. Bakeev, Dokl. Phys. Chem. 440, 198 (2011).CrossRefGoogle Scholar
  19. 19.
    A. M. Muzafarov and E. A. Rebrov, J. Polym. Sci., Part A 46 (15), 4935–4948 (2008).CrossRefGoogle Scholar
  20. 20.
    Silicon-Containing Dendritic Polymers, Vol. 2 of Advances in Silicon Science, Ed. by P. R. Dvornic and M. J. Owen (Springer, Netherlands, 2009).Google Scholar
  21. 21.
    E. S. Trofimchuk, V. V. Polyanskaya, M. A. Moskvina, T. E. Grokhovskaya, N. I. Nikonorova, A. L. Strembitskaya, A. L. Volynskii, and N. F. Bakeev, Polymer Sci., Ser. A 57, 13 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • N. I. Nikonorova
    • 1
  • E. S. Trofimchuk
    • 1
    Email author
  • I. B. Meshkov
    • 2
  • A. L. Volynskii
    • 1
  • N. F. Bakeev
    • 1
    • 2
  • A. M. Muzafarov
    • 2
    • 3
  1. 1.Department of ChemistryMoscow State UniversityMoscowRussia
  2. 2.Enikolopov Institute of Synthetic Polymer MaterialsRussian Academy of SciencesMoscowRussia
  3. 3.Nesmeyanov Institute of Elementoorganic CompoundsRussian Academy of SciencesMoscowRussia

Personalised recommendations