Advertisement

Nanotechnologies in Russia

, Volume 10, Issue 11–12, pp 878–887 | Cite as

Enhanced adhesion strength of polymer fiber/epoxy matrix in terphase as a result of their modification by detonation nanodiamond soot

  • T. S. Kurkin
  • A. N. Ozerin
  • E. P. Tikunova
  • A. S. Kechek’yan
  • E. K. Golubev
  • A. K. Berkovich
  • V. Yu. Dolmatov
Article

Abstract

The presented study is dedicated to evaluation of the effect of two types of detonation nanodiamond soot particles differing in surface charge polarity on the adhesion strength of the interphase between highly oriented poly(vinyl alcohol) fibers and epoxy matrix. Two major strategies for such modification are considered: 1—only one of the constituent components (either matrix or fiber) is being impregnated with nanodiamond soot; 2—both components of the composite system are being modified with nanodiamond soot. The second approach is further complicated by the fact that fiber and epoxy matrix can either be modified by the same type of nanodiamond soot (i.e. fiber and matrix both contain particles of equal surface polarity) or the modification is being carried out by using different types of nanodiamond soot for impregnating the fiber and the matrix (which results in these components containing disperse particles of the same morphology but opposite surface charge polarity). In the presented study both approaches are addressed.

Keywords

Epoxy Matrix Vinyl Alcohol Deformation Curve Polymer Fiber Detonation Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.-R. Shamsuddin, K. K. C. Ho, P. Ng, A. F. Lee, and A. Bismarck, “Synergy of matrix and fibre modification on adhesion between carbon fibres and poly(vinylidene fluoride),” Compos. Sci. Technol. 72, 56–64 (2011).CrossRefGoogle Scholar
  2. 2.
    F. Awaja, M. Gilbert, G. Kelly, B. Fox, and P. J. Pigram, “Adhesion of polymers,” Progress Polym. Sci. 34, 948–968 (2009).CrossRefGoogle Scholar
  3. 3.
    M. Nardin and J. Schultz, “Relationship between fiber-matrix adhesion and the interfacial shear strength in polymer-based composites,” Compos. Interfaces, No. 1, 172–192 (1993).Google Scholar
  4. 4.
    W. Beckert and B. Lauke, “Critical discussion of singlefiber pull-out test: does it measure adhesion?,” Compos. Sci. Technol. 57, 1689–1706 (1997).CrossRefGoogle Scholar
  5. 5.
    E. Pisanova, S. Zhandarov, and E. Mader, “How can adhesion be determined from micromechanical tests?,” Composites A 32, 425–434 (2001).CrossRefGoogle Scholar
  6. 6.
    P. Drescher, M. Thomas, J. Borris, U. Riedel, and C. Arlt, “Strengthening fibre/matrix interphase by fibre surface modification and nanoparticle incorporation into the matrix,” Compos. Sci. Technol. 74, 60–66 (2013).CrossRefGoogle Scholar
  7. 7.
    L. Chen, H. Jin, Z. Xu, M. Shan, X. Tian, C. Yang, Z. Wang, and B. Cheng, “A design of gradient interphase reinforced by silanized graphene oxide and its effect on carbon fiber/epoxy interface,” Mater. Chem. Phys. 145, 186–196 (2014).CrossRefGoogle Scholar
  8. 8.
    S. A. Rakha, N. Ali, Y. A. Haleem, F. Alam, A. A. Khurram, and A. Munir, “Comparison of mechanical properties of acid and UV ozone treated nanodiamond epoxy nanocomposites,” J. Mater. Sci. Technol. 30, 753–758 (2014).CrossRefGoogle Scholar
  9. 9.
    V. Yu. Dolmatov, Detonation Synthesis Ultradispersed Diamonds: Production, Properties, Application (SPb. Gos. Univ., St.-Petersburg, 2003) [in Russian].Google Scholar
  10. 10.
    A. Krueger and D. Lang, “Functionality is key: recent progress in the surface modification of nanodiamond,” Adv. Funct. Mater. 22, 890–906 (2012).CrossRefGoogle Scholar
  11. 11.
    K. E. Perepelkin, Reinforcing Fibers and Fibrous Polymer Composites (Nauch. Osnovy Tekhnol., St.-Petersburg, 2009) [in Russian].Google Scholar
  12. 12.
    T. S. Kurkin, A. N. Ozerin, A. S. Kechek’yan, O. T. Gritsenko, L. A. Ozerina, G. G. Alkhanishvili, V. G. Sushchev, and V. Yu. Dolmatov, “The structure and properties of polymer composite fibers based on poly(vinyl alcohol) and nanodiamond of detonation synthesis,” Nanotechnol. Russ. 5, No. 5–6, 340–351 (2010).CrossRefGoogle Scholar
  13. 13.
    V. V. Boyko, A. A. Kuznetsov, G. K. Semenova, M. S. Tsarkova, V. G. Krasovskii, and A. N. Ozerin, “Gel-free saponification process of polyvinyl acetate in aqueous-alcohol media,” Plast. Massy 22, No. 4, (2003).Google Scholar
  14. 14.
    V. V. Boyko, A. A. Kuznetsov, G. K. Semenova, and A. N. Ozerin, “Gel-free process of synthesis of poly(vinyl alcohol),” Russ. Chem. Bull., No. 3, 735 (2003).Google Scholar
  15. 15.
    Yu. A. Gorbatkina, Adhesive Strength of Fiber-Polymer Systems (Khimiya, Moscow, 1987) [in Russian].Google Scholar
  16. 16.
    C. di Francia, T. Ward, and R. Claus, “The single-fibre pull-out test: review and interpretation,” Composites A 27, 597–612 (1996).CrossRefGoogle Scholar
  17. 17.
    E. Mäder, “Study of fibre surface treatments for control of interphase properties in composites,” Compos. Sci. Technol. 57, 1077–1088 (1997).CrossRefGoogle Scholar
  18. 18.
    Yu. A. Gorbatkina and V. I. Solodilov, “Influence of the loading rate and the concentration of an active diluent on the strength of epoxy composites and model adhesive compounds,” J. Eng. Phys. Thermophys. 76, 597–603 (2003).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • T. S. Kurkin
    • 1
  • A. N. Ozerin
    • 1
  • E. P. Tikunova
    • 1
  • A. S. Kechek’yan
    • 1
  • E. K. Golubev
    • 1
  • A. K. Berkovich
    • 2
  • V. Yu. Dolmatov
    • 3
  1. 1.Enikolopov Institute of Synthetic Polymeric MaterialsRussian Academy of SciencesMoscowRussia
  2. 2.Lomonosov Moscow State UniversityMoscowRussia
  3. 3.JSC “Diamond Centre”, St.-PetersburgSt. PetersburgRussia

Personalised recommendations