Skip to main content
Log in

Nanostructured composites based on highly porous carbon matrices filled with gold

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

High-purity, regularly shaped nanostructured gold-carbon composites with high specific surface area and porosity were obtained via the reduction of hydrogen tetrachloroaurate (III) by highly porous matrices developed with the authors’ participation. The effect of gold content and porous structure parameters of matrices on the formation topography, size and shape of filler particles, and parameters of the porous structure of gold-carbon composites was studied. It was revealed that surface the decoration of matrix pores with gold particles takes place as HAuCl4 is reduced by Kemerit and Carbonizat highly porous carbon matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Gatin, M. V. Grishin, A. A. Kirsankin, V. A. Kharitonov, and B. R. Shub, “Individual nanoparticles of aluminum, gold, nickel, and platinum deposited on a pyrolytic graphite surface,” Nanotech. Russ. 8(1–2), 36 (2013).

    Article  Google Scholar 

  2. V. K. Portnoi, A. V. Leonov, A. I. Logacheva, A. V. Logachev, and A. N. Streletskii, “Mechanochemical synthesis and compaction of nanocomposites based on Ni3Al intermetallic compound containing carbon and carbide-forming elements,” Nanotech. Russ. 8(11–12), 773 (2013).

    Article  Google Scholar 

  3. D. B. Akolekar and S. K. Bhargava, “Investigations on gold nanoparticles in mesoporous and microporous materials,” J. Molec. Catal. A: Chem. 236, 77–86 (2005).

    Article  Google Scholar 

  4. J. Jiao and S. Seraphin, “Single-walled tubes and encapsulated nanoparticles: comparison of structural properties of carbon nanoclusters prepared by three different methods,” J. Phys. Chem. Solids 61, 1055–1067 (2000).

    Article  Google Scholar 

  5. V. V. Sviridov, T. N. Vorob’eva, T. V. Gaevskaya, and L. I. Stepanova, Metals Chemical Deposition in Aqueous Solutions (Univ., Minsk, 1987) [in Russian].

    Google Scholar 

  6. K. M. Vansovskaya, Chemically Deposited Metallic Coatings (Mashinostroenie, Leningrad, 1985) [in Russian].

    Google Scholar 

  7. V. F. Puntes, K. Krishnan, and A. P. Alivisatos, “Synthesis of colloidal cobalt nanoparticles with controlled size and shapes,” Top. Catal. 19(2), 145–148 (2002).

    Article  Google Scholar 

  8. F. Dumur, A. Guerlin, E. Dumas, D. Bertin, D. Gigmes, and C. R. Mayer, “Controlled spontaneous generation of gold nanoparticles assisted by dual reducing and capping agent,” Gold Bull. 44(2), 119–137 (2011).

    Article  Google Scholar 

  9. A. I. Busev, and V. M. Ivanov, Analytical Chemistry of Gold (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  10. L. A. Dykman, V. A. Bogatyrev, S. Yu. Shchegolev, and N. G. Khlebtsov, Golden Nanoparticles: Synthesis, Properties, Biomedical Application (Nauka, Moscow, 2008) [in Russian].

    Google Scholar 

  11. M. Faraday, “The Bakerian lecture: experimental relations of gold (and other metals) to light,” Philos. Trans. Roy. Soc. 147, 145–181 (London, 1857).

    Article  Google Scholar 

  12. Y. Sanokawa, D. Uchida, Y. Kude, and T. Kobayashi, Japan Patent No. 2000191386. IPC7; C 04 B 35/52; C 04 B 41/51; C 04 B 41/88 (11.07.2000).

  13. D. H. Bae and H. J. Choi, US Patent No. 2012241670. IPC7; C 09 K 3/00; C 22 C 1/02; C 22 C 1/05 (27. 09. 2012).

  14. T. K. Shah, H. C. Malecki, and J. A. Waicukauski, US Patent No. 2012164429. IPC7; B 22 D 19/14; B 22 D 25/00; B 22 F 3/00 (28.06.2012).

  15. J. V. Shugart and R. C. Scherer, US Patent No. 2012009110. IPC7; C 01 B 31/30 (12.01.2012).

  16. T. J. Konno, K. Shoji, K. Sumiyama, and K. Suzuki, “Structure and magnetic properties of co-sputtered Co-C thin films,” J. Magn. Magn. Mater. 195, 9–18 (1999).

    Article  Google Scholar 

  17. N. Sano, H. Akazawa, T. Kikuchi, and T. Kanki, “Separated synthesis of iron-included carbon nanocapsules and nanotubes by pyrolysis of ferrocene in pure hydrogen,” Carbon 41(11), 2159–2179 (2003).

    Article  Google Scholar 

  18. Z. H. Wang, Z. D. Zhang, C. J. Choi, and B. K. Kim, “Structure and magnetic properties of Fe(C) and Co(C) nanocapsules prepared by chemical vapor condensation,” J. Alloys Compounds 361, 289–293 (2003).

    Article  Google Scholar 

  19. K. A. Bagdasarova, “Metal-carbon magnetic nanocomposites based on infrared pyrolyzed polyacrylnitride,” Extended Abstract of Candidate’s Dissertation in Physical and Mathematical Sciences (Moscow, 2008).

    Google Scholar 

  20. K. A. Bagdasarova, L. M. Zemtsov, G. N. Karpacheva, et al., “Structure and magnetic properties of metal-carbon nanocomosites based on infrared pyrolyzed polyacrylnitride and Fe,” Fiz. Tverd. Tela 50(4), 739–742 (2008).

    Google Scholar 

  21. M. N. Efimov, E. L. Dzidziguri, E. N. Sidorova, et al., “Phase formation in nanocomposites of the C-Pd-Fe system,” Russ. J. Phys. Chem. A. 85(4), 660 (2011).

    Article  Google Scholar 

  22. M. N. Efimov, A. A. Nekrasova, E. L. Dzidziguri, et al., “Variation in palladium nanoparticles structure in C-Pd system under hydrogen dissipation,” Kristallografiya 57(4), 638–642 (2012).

    Google Scholar 

  23. E. L. Dzidziguri, D. G. Muratov, L. M. Zemtsov, et al., “Formation of bimetal nanoparticles in the structure of C-Cu-Zn metal-carbon nanocomposite,” Nanotech. Russ. 7(1–2), 62 (2012).

    Article  Google Scholar 

  24. V. A. Bogatyrev, L. A. Dykman, and N. G. Khlebtsov, The Way to Synthesize Nanoparticels with Plasmonic Resonance (Saratov State Univ., Saratov, 2009) [in Russian].

    Google Scholar 

  25. A. Yu. Olenin and G. V. Lisichkin, “The way to produce, structure dynamics of volume and surface of metallic nanoparticles in condensed mediums,” Usp. Khim. 80(7), 635–662 (2011).

    Article  Google Scholar 

  26. S. Guoyue, C. Junshui, X. Sujie, X. He, L. Ying, N. Dongxia, W. Yinyin, S. Qian, and J. Litong, China Patent No. 102033088. IPC7; G 01 N 27/30; G 01 N 27/48 (27.04.11).

  27. S. Kumar, I. Kaur, K. Dharamvir, and L. M. Bharadwaj, “Controlling the density and site of attachment of gold nanoparticles onto the surface of carbon nanotubes,” J. Colloid Interface Sci. 369, 23–27 (2012).

    Article  Google Scholar 

  28. X. Hou, L. Wang, X. Wang, and Z. Li, “Coating multiwalled carbon nanotubes with gold nanoparticles derived from gold salt precursors,” Diamond Related Mater. 20, 1329–1332 (2011).

    Article  Google Scholar 

  29. L. Jiang and L. Gao, “Modified carbon nanotubes: an effective way to selective attachment of gold nanoparticles,” Carbon 41(15), 2923–2929 (2003).

    Article  Google Scholar 

  30. K. M. Metz, P. E. Colavital, K.-Y. Tse, and R. J. Hamers, “Nanotextured gold coatings on carbon nanofiber scaffolds as ultrahigh surface-area electrodes,” J. Power Sources 198, 393–401 (2012).

    Article  Google Scholar 

  31. N. V. Pavelko, G. Yu. Simenyuk, T. S. Manina, et al., “The way to produce nanostructures metal-carbon composites based on carbon matrixes,” Vestn. Kemerovsk. Gos. Univ. 3(3), 100–104 (2013).

    Google Scholar 

  32. N. V. Pavelko, G. Yu. Simenyuk, T. S. Manina, and Yu. A. Zakharov, “Nanostructured metal-carbon composites based on gold and mesoporous carbon matrixes,” in Proc. 20th Int. Chernyaev Conf. on Chemistry, Analytics and Technology of Platinum Metals (Siberian Federal Univ., Krasnoyarsk, 2013), p. 211.

    Google Scholar 

  33. A. V. Samarov, Ch. N. Barnakov, A. P. Kozlov, and Z. R. Ismagilov, “The way to produce highly porous materials (sorbets) from coals, cokes and individual organic compounds for methane adsorption storage,” Koks Khim., No. 09, 29–34 (2012).

    Google Scholar 

  34. Ch. N. Barnakov, S. K. Seit-Ablaeva, A. P. Kozlov, et al., RF Patent No. 2206394. IPC7 B01 J20/20, C01 B31/12 (2002).

  35. T. S. Manina, N. I. Fedorova, S. A. Semenova, and Z. R. Ismagilov, “The way to process low-grade oxygenated coals for producing highly efficient carbon sorbents,” Koks Khim., No. 03, 43–46 (2012).

    Google Scholar 

  36. D. I. Cvergun and L. A. Feigin, X-Ray and Neutron Low-Angle Scattering (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  37. A. R. West, Solid State Chemistry and Its Applications (Wiley, Chichester, 1984), Part 1.

    Google Scholar 

  38. S. S. Gorelik, Yu. A. Skakov, and L. N. Rastorguev, X-Ray Diffraction and Electron-Optical Analyses (National Univ. of Science and Technology MISiS, Moscow, 1994).

    Google Scholar 

  39. L. M. Plyasova, Introduction into Catalytic Agents X-Ray Radiography (Boreskov Institute of Catalysis Siberian Branch RAS, Novosibirsk, 2010) [in Russian].

    Google Scholar 

  40. E. L. Dzidziguri and E. N. Sidorova, Ultrafine Mediums: Methods of X-Ray Diffractometry for Nanomaterials Research (National Univ. of Science and Technology MISiS, Moscow, 2007) [in Russian].

    Google Scholar 

  41. E. L. Dzidziguri, “The way to research nanomaterials by means of X-ray diffractometry,” Nanotekhnol. Nauka Proizv., Special Issue, 91–95 (2012).

    Google Scholar 

  42. V. G. Dodonov, “The improved method of particle size distribution analysis from the small-angle X-ray scattering data,” Z. Kristallogr. Suppl. Issue, No. 4, 102 (1991).

    Google Scholar 

  43. V. G. Dodonov, “The way to apply low-angle scattering for analyzing inhomogeneous material structure. Applied software pack,” in Proc. 9th Int. Conf. on Radiation Physics and Chemistry of Inorganic Materials (Tomsk Polytech. Univ., Tomsk, 1996), pp. 139–140 [in Russian].

    Google Scholar 

  44. A. P. Karnaukhov, Absorption. Texture of Dispersed and Porous Materials (Nauka, Novosibirsk, 1999) [in Russian].

    Google Scholar 

  45. S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area and Porosity (Acad., London, 1967).

    Google Scholar 

  46. L. V. Adamova and A. P. Safronov, Sorption Method for Researching Nanomaterials’ Porous Structure and Specific Surface of Nanosized Systems. Student’s Book (Ural State Univ., Yekaterinburg, 2008) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Zakharov.

Additional information

Original Russian Text © Yu.A. Zakharov, G.Yu. Simenyuk, V.M. Pugachev, V.G. Dodonov, N.V. Pavelko, T.S. Manina, Ch.N. Barnakov, 2015, published in Rossiiskie Nanotekhnologii, 2015, Vol. 10, Nos. 5–6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharov, Y.A., Simenyuk, G.Y., Pugachev, V.M. et al. Nanostructured composites based on highly porous carbon matrices filled with gold. Nanotechnol Russia 10, 388–399 (2015). https://doi.org/10.1134/S1995078015030192

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078015030192

Keywords

Navigation