Advertisement

Nanotechnologies in Russia

, Volume 10, Issue 1–2, pp 42–52 | Cite as

Strengthened electrically conductive composite materials based on ultra-high-molecular-weight polyethylene reactor powder and nanosized carbon fillers

  • O. V. Lebedev
  • A. N. Ozerin
  • A. S. Kechek’yan
  • E. K. Golubev
  • V. G. Shevchenko
  • T. S. Kurkin
  • M. A. Beshenko
  • V. G. Sergeev
Article

Abstract

Electrically conducting samples of polymer composites of different compositions based on the reactor powder of ultra-high-molecular-weight polyethylene (UHMWPE) with a special morphology filled with fine powders of graphite, carbon nanotubes (CNTs), and electrically conducting carbon black (CB) are investigated. Strengthened oriented electrically conductive polymer composites possessing high tensile strength and conductivity values are obtained by the compaction of mechanical mixtures of the polymer and fillers powders, followed by the uniaxial deformation of materials under homogeneous shear conditions. Changes in the electrical conductivity of oriented composite materials during reversible “tension-contraction” cycles along the orientation axis direction are studied. The influence of the type of nanosized carbon filler on the electrical conductivity and mechanical properties of strengthened conductive composites oriented under homogeneous shear conditions is investigated.

Keywords

Percolation Threshold UHMWPE Conductive Filler Reactor Powder UHMWPE Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. C. Huang, “Carbon black filled conducting polymers and polymer blends,” Adv. Polym. Tech. 21(4), 299–313 (2002).CrossRefGoogle Scholar
  2. 2.
    M. Moniruzzaman and K. I. Winey, “Polymer nanocomposites containing carbon nanotubes,” Macromolecules 39(16), 5194–5205 (2006).CrossRefGoogle Scholar
  3. 3.
    J. N. Coleman, U. Khan, W. J. Blau, and Y. K. Gun’ko, “Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites,” Carbon 44(9), 1624–1652 (2006).CrossRefGoogle Scholar
  4. 4.
    M. H. Al-Saleh and U. Sundararaj, “A review of vapor grown carbon nanofiber/polymer conductive composites,” Carbon 47(1), 2–22 (2009).CrossRefGoogle Scholar
  5. 5.
    T. Kuilla, S. Bhadra, D. H. Yao, N. H. Kim, S. Bose, and J. H. Lee, “Recent advances in graphene based polymer composites,” Prog. Polym. Sci. 35(11), 1350–1375 (2010).CrossRefGoogle Scholar
  6. 6.
    E. N. Kablov, S. V. Kondrashov, and G. Yu. Yurkov, “Prospects of using carbonaceous nanoparticles in binders for polymer composites,” Nanotechnol. Russ. 8(3–4), 163–185 (2013).CrossRefGoogle Scholar
  7. 7.
    A. Bhattacharyya, S. Chen, and M. Zhu, “Graphene reinforced ultra-high molecular weight polyethylene with improved tensile strength and creep resistance properties,” eXPRESS Polym. Lett. 8(2), 74–84 (2014).CrossRefGoogle Scholar
  8. 8.
    J. F. Gao, Z. M. Li, Q. J. Meng, and Q. Yang, “CNTs/UHMWPE composites with a two-dimensional conductive network,” Mater. Lett. 62, 3530–3532 (2008).CrossRefGoogle Scholar
  9. 9.
    S. R. Bakshi and J. E. Tercero, “Synthesis and characterization of multiwalled carbon nanotube reinforced ultra high molecular weight polyethylene composite by electrostatic spraying technique,” Compos Part A: Appl. Sci. 38, 2493–2499 (2007).CrossRefGoogle Scholar
  10. 10.
    X. Hao, G. Gai, Y. Yang, Y. Zhang, and C. W. Nan, “Development of the conductive polymer matrix composite with low concentration of the conductive filler,” Mater. Chem. Phys. 109, 15–19 (2008).CrossRefGoogle Scholar
  11. 11.
    M. O. Lisunova, Ye. P. Mamunya, N. I. Lebovka, and A. V. Melezhyk, “Percolation behaviour of ultrahigh molecular weight polyethylene/multi-walled carbon nanotubes composites,” Eur. Polym. J. 43, 949–958 (2007).CrossRefGoogle Scholar
  12. 12.
    C. Zhang, C. A. Ma, P. Wang, and M. Sumita, “Temperature dependence of electrical resistivity for carbon black filled ultra-high molecular weight polyethylene composites prepared by hot compaction,” Carbon 43(12), 2544–2553 (2005).CrossRefGoogle Scholar
  13. 13.
    H. Pang, T. Chen, G. Zhang, B. Zeng, and Z.-M. Li, “An electrically conducting polymer/graphene composite with a very low percolation threshold,” Mater. Lett. 64, 2226–2229 (2010).CrossRefGoogle Scholar
  14. 14.
    I. M. Ward, Mechanical Properties of Solid Polymers, 2nd ed. (1983).Google Scholar
  15. 15.
    A. S. Kechek’yan, E. S. Mikhailik, K. Z. Monakhova, T. S. Kurkin, O. T. Gritsenko, M. A. Beshenko, and A. N. Ozerin, “Effect of preliminary compression and uniform shear on the deformation behavior of a filled polymer nanocomposite in orientation stretching,” Dokl. Chem., No. 1, 94–97 (2013).Google Scholar
  16. 16.
    G. Carotenuto, S. De Nicola, M. Palomba, D. Pullini, A. Horsewell, T. W. Hansen, and L. Nicolais, “Mechanical properties of low-density polyethylene filled by graphite nanoplatelets,” Nanotechnology 23(8), 485705 (2012).CrossRefGoogle Scholar
  17. 17.
    S. Y. Fu, X. Q. Feng, B. Lauke, and Y. W. Mai, “Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites,” Compos. Part B: Eng. 39(6), 933–961 (2008).CrossRefGoogle Scholar
  18. 18.
    P. Ciselli, R. Zhang, Z. Wang, C. T. Reynolds, M. Baxendale, and T. Peijs, “Oriented UHMW-PE/CNT composite tapes by a solution casting-drawing process using mixed-solvents,” Eur. Polym. J. 45, 2741–2748 (2009).CrossRefGoogle Scholar
  19. 19.
    S. Ruan, P. Gao, and T. X. Yu, “Ultra-strong gel-spun UHMWPE fibers reinforced using multiwalled carbon nanotubes,” Polymer 47, 1604–1611 (2006).CrossRefGoogle Scholar
  20. 20.
    O. V. Lebedev, A. S. Kechek’yan, V. G. Shevchenko, T. S. Kurkin, M. A. Beshenko, and A. N. Ozerin, “Strengthened Eelectrically conductive composites based on ultra high molecular weight polyethylene filled with fine graphite,” Dokl. Chem. 456(2), 87–90 (2014).CrossRefGoogle Scholar
  21. 21.
    A. N. Ozerin, S. S. Ivanchev, S. N. Chvalun, V. A. Aulov, N. I. Ivancheva, and N. F. Bakeev, “Properties of oriented film tapes prepared via solid-state processing of a nascent ultrahigh-molecular-weight polyethylene reactor powder synthesized with a postmetallocene catalyst,” Polymer Sci. Ser. A 54(12), 950–954 (2012).CrossRefGoogle Scholar
  22. 22.
    T. Kanamoto, T. Ohama, K. Tanaka, M. Takeda, and R. S. Porter, “Two-stage drawing of ultra-high molecular weight polyethylene reactor powder,” Polymer 28(9), 1517 (1987).CrossRefGoogle Scholar
  23. 23.
    S. Akira, K. Hirofumi, I. Yoshimu, Y. Shigeki, and M. Kazuo, Eur. Patent No. EP0376423 (1990).Google Scholar
  24. 24.
    V. I. Selikhova, Yu. A. Zubov, E. A. Sinevich, S. N. Chvalun, N. I. Ivancheva, O. V. Smol’yanova, S. S. Ivanchev, and N. F. Bakeev, Polym. Sci. USSR 34, 151 (1992).Google Scholar
  25. 25.
    Y. L. Joo, O. H. Han, H. K. Lee, and J. K. Song, “Characterization of ultra high molecular weight polyethyelene nascent reactor powders by X-ray diffraction and solid state NMR,” Polymer 41(4), 1355–1368 (2000).CrossRefGoogle Scholar
  26. 26.
    Y. L. Joo, H. Zhou, S. G. Lee, H. K. Lee, and J. K. Song, “Solid-state compaction and drawing of nascent reactor powders of ultra-high-molecular-weight polyethylene,” J. Appl. Polym. Sci. 98, 718–730 (2005).CrossRefGoogle Scholar
  27. 27.
    R. A. Antunes, M. C. L. de Oliveira, G. Ett, and V. Ett, “Carbon materials in composite bipolar plates for polymer electrolyte membrane fuel cells: a review of the main challenges to improve electrical performance,” J. Power Sources 196, 2945–2961 (2011).CrossRefGoogle Scholar
  28. 28.
    W. Bauhofer and J. Z. Kovacs, “A review and analysis of electrical percolation in carbon nanotube polymer composites,” Compos. Sci. Technol. 69, 1486–1498 (2009).CrossRefGoogle Scholar
  29. 29.
    P. C. Ma, N. A. Siddiqui, G. Marom, and J. K. Kim, “Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review,” Compos Part A: Appl. Sci. 41, 1345–1367 (2010).CrossRefGoogle Scholar
  30. 30.
  31. 31.
    https://graphene_supermarket.comGoogle Scholar
  32. 32.
    A. Peigney, C. Laurent, E. Flahaut, R. Bacsa, and A. Rousset, “Specific surface area of carbon nanotubes and bundles of carbon nanotubes,” Carbon 39(4), 507–514 (2001).CrossRefGoogle Scholar
  33. 33.
    K. S. Subrahmanyam, S. R. C. Vivekchand, A. Govindaraj, and C. N. R. Rao, “A study of graphenes prepared by different methods: characterization, properties and solubilization,” J. Mater. Chem. 18, 1517–1523 (2008).CrossRefGoogle Scholar
  34. 34.
    Z. M. Li, S. N. Li, M. B. Yang, and R. Huang, “A novel approach to preparing carbon nanotube reinforced thermoplastic polymer composites,” Carbon 43, 2413–2416 (2005).CrossRefGoogle Scholar
  35. 35.
    S. N. Li, B. Li, Z. M. Li, Q. Fu, and K. Z. Shen, “Morphological manipulation of carbon nanotube/polycarbonate/polyethylene composites by dynamic injection packing molding,” Polymer 47, 4497–4500 (2006).CrossRefGoogle Scholar
  36. 36.
    Z. M. Li, X. B. Xu, A. Lu, K. Z. Shen, R. Huang, and M. B. Yang, “Carbon black/poly(ethylene terephthalate)/polyethylene composite with electrically conductive in situ microfiber network,” Carbon 42, 428–432 (2004).CrossRefGoogle Scholar
  37. 37.
    L. A. Pranger, “Self-assembly and reactive molding techniques for controlling the interface and dispersion of the particulate phase in nanocomposites,” ProQuest (2008).Google Scholar
  38. 38.
    K. Kalaitzidou, H. Fukushima, and L. T. Drzal, “A route for polymer nanocomposites with engineered electrical conductivity and percolation threshold,” Materials 3, 1089–1103 (2010).CrossRefGoogle Scholar
  39. 39.
    J. Du, L. Zhao, Y. Zeng, L. Zhang, F. Li, P. Liu, and C. Liu, “Comparison of electrical properties between multi-walled carbon nanotube and graphene nanosheet/high density polyethylene composites with a segregated network structure,” Carbon 49, 1094–1100 (2011).CrossRefGoogle Scholar
  40. 40.
    S. H. Foulger, “Reduced percolation thresholds of immiscible conductive blends,” J. Polym. Sci. Polym. Phys. 37, 1899–1910 (1999).CrossRefGoogle Scholar
  41. 41.
    Y. P. Mamunya, V. V. Davydenko, P. Pissis, and E. V. Lebedev, “Electrical and thermal conductivity of polymera filled with powders,” Eur. Polym. J. 38, 1887–1897 (2002).CrossRefGoogle Scholar
  42. 42.
    N. Lebovka, M. Lisunova, Y. P. Mamunya, and N. Vygornitskii, “Scaling in percolation behaviour in conductive-insulating composites with particles of different size,” J. Phys. D: Appl. Phys. 39, 2264–2271 (2006).CrossRefGoogle Scholar
  43. 43.
    F. Lux, “Models proposed to explain the electrical conductivity of mixtures made of conductive and insulating materials,” J. Mater. Sci. 28, 285–301 (1993).CrossRefGoogle Scholar
  44. 44.
    A. R. Blythe and D. Bloor, Electrical Properties of Polymers, 2nd ed. (Cambridge Univ. press, 2005).Google Scholar
  45. 45.
    D. Stauffer and A. Aharony, Introduction to percolation theory, 2nd ed. (Taylor & Francis, 1992).Google Scholar
  46. 46.
    M. Sahimi, Applications of Percolation Theory (Taylor & Francis, London, 1994).Google Scholar
  47. 47.
    S. Kirkpatrick, “Percolation and conduction,” Rev. Mod. Phys. 45(4), 574–582 (1973).CrossRefGoogle Scholar
  48. 48.
    H. Pang, C. Chen, Y. Bao, J. Chen, X. Ji, J. Lei, Z. and M. Li, “Electrically conductive carbon nanotube/ultrahigh molecular weight polyethylene composites with segregated and double percolated structure,” Mater. Lett. 79, 96–99 (2012).CrossRefGoogle Scholar
  49. 49.
    M. Sarikanat, K. Sever, E. Erbay, F. Güner, I. Tavman, A. Turgut, Y. Seki, and I. Özdemir, “Preparation and mechanical properties of graphite filled HDPE nanocomposites,” Arch. Mater. Sci. Eng. 50(2), 120–124 (2011).Google Scholar
  50. 50.
    K. Q. Xiao, L. C. Zhang, and I. Zarudi, “Mechanical and rheological properties of carbon nanotube-reinforced polyethylene composites,” Compos. Sci. Technol. 67, 177–182 (2007).CrossRefGoogle Scholar
  51. 51.
    R. Zhang, M. Baxendale, and T. Peijs, “Universal resistivity-strain dependence of carbon nanotube/polymer composites,” Phys. Rev. B 76, 195433 (2007).CrossRefGoogle Scholar
  52. 52.
    J. N. Aneli, G. E. Zaikov, and L. M. Khananashvili, “Effects of mechanical deformations on the structurization and electric conductivity of electric conducting polymer composites,” J. Appl. Polym. Sci. 74, 601–621 (1999).CrossRefGoogle Scholar
  53. 53.
    J. Li and J. K. Kim, “Percolation threshold of conducting polymer composites containing 3D randomly distributed graphite nanoplatelets,” Compos. Sci. Technol. 67, 2114–2120 (2007).CrossRefGoogle Scholar
  54. 54.
    F. Du, J. E. Fischer, and K. I. Winey, “Effect of nanotube alignment on percolation conductivity in carbon nanotube/polymer composites,” Phys. Rev. B 72, 121404-1–121404-4 (2005).Google Scholar
  55. 55.
    F. Du, R. C. Scogna, W. Zhou, S. Brand, J. E. Fischer, and K. I. Winey, “Nanotube networks in polymer nanocomposites: rheology and electrical conductivity,” Macromolecules 37, 9048–9055 (2004).CrossRefGoogle Scholar
  56. 56.
    E. K. Hobbie, H. Wang, H. Kim, and S. Lin-Gibson, “Orientation of carbon nanotubes in a sheared polymer melt,” Phys. Fluids 15(5), 1196–1202 (2003).CrossRefGoogle Scholar
  57. 57.
    H. Kim and C. W. Macosko, “Processing-property relationships of polycarbonate/graphene composites,” Polymer 50, 3797–3809 (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • O. V. Lebedev
    • 1
    • 2
  • A. N. Ozerin
    • 1
  • A. S. Kechek’yan
    • 1
  • E. K. Golubev
    • 1
  • V. G. Shevchenko
    • 1
  • T. S. Kurkin
    • 1
  • M. A. Beshenko
    • 1
  • V. G. Sergeev
    • 3
  1. 1.Enikolopov Institute of Synthetic Polymeric MaterialsRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudnyi, Moscow regionRussia
  3. 3.Chemical FacultyMoscow State UniversityMoscowRussia

Personalised recommendations