Nanotechnologies in Russia

, Volume 9, Issue 7–8, pp 430–440 | Cite as

Research into structure and rheological and relaxation properties of nanocrystalline beryllium at temperatures of hot rolling and research into stress relaxation kinetics in different sorts of beryllium

  • N. G. KolbasnikovEmail author
  • V. V. Mishin
  • A. A. Naumov
  • A. V. Zabrodin


Rheological and relaxational properties of distillate and technical beryllium were studied. It was shown that strengthening and thermal softening processes in nanocrystalline beryllium significantly differ from the same processes in distillate and technical beryllium. Thermal softening in distillate and technical beryllium takes place only at the holding time between deformations; in case of nanocrystalline beryllium, thermal softening takes place during the deformation process. It was considered that beryllium plastic deformation at 400–500°C involves an additional mechanism of deformation and stress relaxation: twinning; this mechanism increases the metal plasticity.


Stress Relaxation Beryllium Thermal Softening TWIP Steel Deformation Degree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. G. Kolbasnikov, V. V. Mishin, A. I. Shamshurin, and A. V. Zabrodin, “Investigation of structure, rheological and relaxation properties, and stress relaxation kinetics in nanocrystalline beryllium at hot rolling temperatures,” Nanotech. Russ. 9(1–2), 65 (2014).CrossRefGoogle Scholar
  2. 2.
    Yu. E. Markushkin, V. V. Gorlevskii, A. V. Zabrodin, et al., “Nanocrystalline beryllium for X-ray optics,” Yad. Fiz. Inzh. 2(4), 375–381 (2011).Google Scholar
  3. 3.
    H. L. Andrade, M. G. Akben, and J. J. Jonas, “Effect of molybdenum, niobium, and vanadium on static recovery and recrystallization and on solute solute strengthening in microalloyed steels,” Metall. Trans. A 14, 1967–1977 (1983).CrossRefGoogle Scholar
  4. 4.
    M. Sc. Tegart, The Electrolytic and Chemical Polishing of Metals in Research and Industry (Pergamon Press, London, 1956).Google Scholar
  5. 5.
    Beryllium Science and Technology, Ed. by D. Webster and G. J. London, (New York, London, 1979).Google Scholar
  6. 6.
    N. N. Davidenkov, B. A. Sidorov, L. M. Shestopalov, et al., “Research of beryllium mechanical properties,” At. Energ. 18(6), 608–616 (1965).CrossRefGoogle Scholar
  7. 7.
    V. M. Amonenko, V. M. Anzhazha, V. E. Ivanov, et al., “Deformation and destruction of rolled beryllium of different purity,” At. Energ., No. 5, 426–432 (1963).Google Scholar
  8. 8.
    I. I. Papirov and G. F. Tikhinskii, Beryllium Plastic Deformation (Atomizdat, Moscow, 1973) [in Russian].Google Scholar
  9. 9.
    Yu. I. Kokovikhin, V. A. Pinashina, S. G. Kovalenko, et al., USSR Inventor’s Certificate No. 1779420 USSR, B 21 B 3/00, Byull. Izobret., No. 45 (1992).Google Scholar
  10. 10.
    N. G. Kolbasnikov and S. Yu. Kondrat’ev, Entropy. Structure. Phase Transformations and Properties of Metals (Nauka, St. Petersburg, 2006) [in Russian].Google Scholar
  11. 11.
    N. G. Kolbasnikov, The Theory of Metals Processing by Pressure. Physical Foundations of Metals Strength and Plasticity (National Research Univ. St. Petersburg State Research Polytechnical Univ., St, Petersburg, 2004) [in Russian].Google Scholar
  12. 12.
    R. W. K. Honeycombe, Plastic Deformation of Metals (Edward Arnold, 1984).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • N. G. Kolbasnikov
    • 1
    Email author
  • V. V. Mishin
    • 1
  • A. A. Naumov
    • 1
  • A. V. Zabrodin
    • 2
  1. 1.St. Petersburg State Polytechnical UniversitySt. PetersburgRussia
  2. 2.Bochvar All-Russian Scientific Research Institute for Inorganic MaterialsMoscowRussia

Personalised recommendations