Advertisement

Nanotechnologies in Russia

, Volume 9, Issue 3–4, pp 175–183 | Cite as

Synthesis by polymerization in situ and properties of composite materials based on syndiotactic polypropylene and carbon nanofillers

  • S. V. PolshchikovEmail author
  • P. M. Nedorezova
  • O. M. Komkova
  • A. N. Klyamkina
  • A. N. Shchegolikhin
  • V. G. Krasheninnikov
  • A. M. Aladyshev
  • V. G. Shevchenko
  • V. E. Muradyan
Article
  • 69 Downloads

Abstract

New composite materials based on a syndiotactic polypropylene (SPP) and nanosized carbon fillers of various types (graphene nanoplates (GNP) and fullerene) are obtained by polymerization in situ. It is shown that the introduction of nanocarbon particles did not lead to a significant decrease in the activity and stereo-specificity of a syndio-specific catalyst. Stress-strain and thermo- and electrophysical properties of the composites are studied. Composites based on SPP are characterized by a higher plasticity than those based on isotactic polypropylene (IPP) at the same filling degrees. An enhancement of the thermal stability of SPP in the presence of carbon nanofillers is demonstrated. A noticeable effect of GNP and fullerene on melting and crystallization of SPP in the composites is found. In SPP/GNP composites, the dielectric permeability is practically independent of the filler concentration. In this case, nanofillers play the role of dielectric probes, making it possible to identify relaxation transitions in the polymer matrix.

Keywords

Fullerene Dynamic Modulus Isotactic Polypropylene Filler Concentration Dielectric Permeability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Kim, A. A. Abdala, and C. Macosco, Macromolecules 43, 6515 (2010).CrossRefGoogle Scholar
  2. 2.
    E. R. Badamshina and M. P. Gafurova, Vysokomolek. Soed. A 50(8), 1572 (2008).Google Scholar
  3. 3.
    N. S. Enikolopov, L. A. Novokshonova, F. S. Dyachkovskii, et al., US Inventor’s Certificate No. 763370, Byull. Izobret. No. 34, 129 (1980); US Patent No. 4241112 (1980).Google Scholar
  4. 4.
    F. S. D’yachkovskii and L. A. Novokshonova, Usp. Khim. 2, 200 (1984).Google Scholar
  5. 5.
    N. M. Galashina, P. M. Nedorezova, V. I. Tsvetkova, F. S. D’yachkovskii, and N. S. Enikolopov, Dokl. Akad. Nauk SSSR 3(278), 620–624 (1984).Google Scholar
  6. 6.
    P. M. Nedorezova, V. G. Shevchenko, A. N. Shchegolikhin, V. I. Tsvetkova, and Yu. M. Korolev, Polym. Sci. Ser. A 46(3), 242 (2004).Google Scholar
  7. 7.
    A. A. Koval’chuk, V. G. Shevchenko, A. N. Shchegolikhin, P. M. Nedorezova, A. N. Klyamkina, and A. M. Aladyshev, Macromolecules 41, 7536–7542 (2008).CrossRefGoogle Scholar
  8. 8.
    S. V. Polschikov, P. M. Nedorezova, A. N. Klyamkina, A. A. Kovalchuk, A. M. Aladyshev, A. N. Shchegolikhin, V. G. Shevchenko, and V. E. Muradyan, J. Appl. Polym. Sci. 127(2), 904–911 (2013).CrossRefGoogle Scholar
  9. 9.
    Y. Huang, Y. Qin, Y. Zhou, H. Niu, Z. Z. Yu, and J. Y. Dong, Chem. Mater. 22, 4096–4102 (2010).CrossRefGoogle Scholar
  10. 10.
    Z. Mlynarcikova, D. Kaempfer, R. Thomann, R. Mulhaupt, and E. Borsig, Polym. Adv. Technol. 16, 362 (2005).CrossRefGoogle Scholar
  11. 11.
    P. M. Nedorezova, V. I. Tsvetkova, A. M. Aladyshev, D. V. Savinov, A. N. Klyamkina, V. A. Optov, and D. A. Lemenovskii, Polym. Sci. Ser. A 43(4), 356 (2001).Google Scholar
  12. 12.
    D. W. Chae, Shim K. Bo, and B. Kim, J. Appl. Polym. Sci. 109, 2942–2947 (2008).CrossRefGoogle Scholar
  13. 13.
    V. G. Gregoriou, G. Kandilioti, and S. T. Bollas, Polymer 46, 11340 (2005).CrossRefGoogle Scholar
  14. 14.
    Z. Mlynarcikova, D. Kaempfer, R. Thomann, R. Mulhaupt, and E. Borsig, Polym. Adv. Technol. 16, 362 (2005).CrossRefGoogle Scholar
  15. 15.
    R. Pucciariello, V. Villani, L. Guadagno, and V. Vittoria, Polym. Eng. Sci. 46, 1433 (2006).CrossRefGoogle Scholar
  16. 16.
    P. Charoenphol and P. Supaphol, J. Appl. Polym. Sci. 95, 245–253 (2005).CrossRefGoogle Scholar
  17. 17.
    S. Stankovich, R. D. Piner, X. Chen, N. Wu, S.-B. T. Nguyen, and R. S. Ruoff, J. Mater. Chem. 16, 155–158 (2006).CrossRefGoogle Scholar
  18. 18.
    W. Hummers and R. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).CrossRefGoogle Scholar
  19. 19.
    V. E. Muradyan, V. S. Romanova, A. P. Moravsky, Z. N. Parnes, and Yu. N. Novikov, Russ. Chem. Bull. 49(6), 1017–1019 (2000).CrossRefGoogle Scholar
  20. 20.
    S. D. Kushch, V. E. Muradyan, A. P. Moravskii, and P. V. Fursikov, Neftekhimiya 37(2), 112 (1997).Google Scholar
  21. 21.
    A. Razavi and J. L. Atwood, J. Organomet. Chem. 459, 117 (1993).CrossRefGoogle Scholar
  22. 22.
    Yu. V. Kissin, Isospecific Polymerization of Olefins (Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1985), p. 15.CrossRefGoogle Scholar
  23. 23.
    S. V. Polshchikov, P. M. Nedorezova, T. V. Monakhova, A. N. Klyamkina, A. N. Shchegolikhin, V. G. Krasheninnikov, V. E. Muradyan, A. A. Popov, and A. L. Margolin, Polym. Sci. Ser. B 55(5), 286 (2013).CrossRefGoogle Scholar
  24. 24.
    A. A. Kovalchuk, V. G. Shevchenko, A. N. Shchegolikhin, P. M. Nedorezova, A. N. Klyamkina, and A. M. Aladyshev, J. Mater. Sci. 43, 7132–7140 (2008).CrossRefGoogle Scholar
  25. 25.
    S. V. Pol’shchikov, P. M. Nedorezova, A. N. Klyamkina, V. G. Krasheninnikov, A. M. Aladyshev, A. N. Shchegolikhin, V. G. Shevchenko, E. A. Sinevich, T. V. Monakhova, and V. E. Muradyan, Nanotech. Russ. 8(1–2), 69 (2013).CrossRefGoogle Scholar
  26. 26.
    I. L. Dubnikova, E. V. Kuvardina, V. G. Krasheninnikov, S. M. Lomakin, I. A. Tchmutin, and S. P. Kuznetsov, J. Appl. Polym. Sci. 117, 259–272 (2010).Google Scholar
  27. 27.
    V. G. Oshmyan and D. K. Muravin, Composite Sci. Technol. 57, 1167–1174 (1997).CrossRefGoogle Scholar
  28. 28.
    A. A. Koval’chuk, A. N. Shchegolikhin, I. L. Dubnikova, P. M. Nedorezova, A. N. Klyamkina, and A. M. Aladyshev, Plast. Massy, No. 5, 27–30 (2008).Google Scholar
  29. 29.
    P. Charoenphol and P. Supaphol, J. Appl. Polym. Sci. 95, 245–253 (2005).CrossRefGoogle Scholar
  30. 30.
    A. A. Koval’chuk, A. N. Shchegolikhin, V. G. Shevchenko, P. M. Nedorezova, A. N. Klyamkina, A. M. Aladyshev, Macromolecules 41, 3149–3156 (2008).CrossRefGoogle Scholar
  31. 31.
    D. L. Dotson, US Patent No. 6887963 B2 (2005).Google Scholar
  32. 32.
    L. Yunfeng, Z. Jiahua, W. Suying, R. Jongeum, W. Qiang, S. Luyi, and G. Zhanhu, Macromol. Chem. Phys. 212, 2429–2438 (2011).CrossRefGoogle Scholar
  33. 33.
    K. Kessairi, S. Napolitano, S. Capaccioli, P. Rolla, and M. Wubbenhorst, Macromolecules 40, 1786–1788 (2007).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • S. V. Polshchikov
    • 1
    Email author
  • P. M. Nedorezova
    • 1
  • O. M. Komkova
    • 1
  • A. N. Klyamkina
    • 1
  • A. N. Shchegolikhin
    • 2
  • V. G. Krasheninnikov
    • 1
  • A. M. Aladyshev
    • 1
  • V. G. Shevchenko
    • 3
  • V. E. Muradyan
    • 4
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia
  3. 3.Enikolopov Institute of Synthetic Polymeric MaterialsRussian Academy of SciencesMoscowRussia
  4. 4.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations