Advertisement

Nanotechnologies in Russia

, Volume 9, Issue 3–4, pp 194–202 | Cite as

A new nanobiomaterial: particles of liquid-crystalline DNA dispersions with embedded clusters of gold nanoparticles

  • Yu. M. Yevdokimov
  • S. G. Skuridin
  • V. I. Salyanov
  • V. I. Popenko
  • E. V. Shtykova
  • L. A. Dadinova
  • V. V. Volkov
  • N. G. Khlebtsov
  • B. N. Khlebtsov
  • E. I. Kats
Article

Abstract

The effect of gold (Au) nanoparticles with an average size of about 2 nm on double-stranded DNA cholesteric liquid-crystal dispersion (CLCD) particles has been studied. Treatment of DNA CLCD by Au nanoparticles results in two effects: a “disturbance” of the spatial structure of dispersion particles and the induction of the cholesteric → nematic phase transition, as well as the formation of 40.5–53.0 nm linear clusters of Au nanoparticles between neighboring DNA molecules. The efficiency of formation of these clusters and their size depend on the solution properties. Clusters of Au nanoparticles can crosslink neighboring DNA molecules, thus forming “rigid” DNA CLCD particles. The average size of rigid DNA CLCD particles is 450–500 nm, and their height does not exceed 300 nm. Thus, the effect of Au nanoparticles on DNA CLCD leads to the formation of nanobiomaterial in which clusters of Au nanoparticles are formed between DNA molecules fixed in the spatial structure of dispersion particles. This nanobiomaterial has new physicochemical properties (such as a lack of abnormal optical activity and the presence of linear clusters of Au nanoparticles in the structure of DNA CLCD particles, via which the interaction between neighboring DNA molecules is implemented); as a result, it differs from standard nanobiomaterials based on double-stranded DNA molecules.

Keywords

Circular Dichroism Spectrum Surface Plasmon Resonance Band Linear Cluster Abnormal Band Liquid Crystalline Dispersion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Hegmann, H. Qi, and V. M. Marx, J. Inorg. Organomet. Polym. Mater. 17(3), 483 (2007).CrossRefGoogle Scholar
  2. 2.
    G. L. Nealon, R. Greget, C. Dominguez, Z. T. Nagy, D. Guillon, J.-L. Gallani, and B. Donnio, Beilstein J. Org. Chem 8, 349 (2012).CrossRefGoogle Scholar
  3. 3.
    O. Stamatoiu, J. Mirzaei, X. Feng, and T. Hegmann, Top. Curr. Chem. 318, 331 (2012). doi: 10.1007/128-2011-233CrossRefGoogle Scholar
  4. 4.
    L. A. Dykman, V. A. Bogatyrev, S. Yu. Shchegolev, and N. G. Khlebtsov, Golden Nanoparticles: Synthesis, Properties and Biomedical Application (Nauka, Moscow, 2008) [in Russian].Google Scholar
  5. 5.
    C. Louis and O. Pluchery, Gold Nanoparticles for Physics, Chemistry and Biology (Imperial College Press, London, 2012).CrossRefGoogle Scholar
  6. 6.
    Yu. M. Yevdokimov, S. G. Skuridin, V. I. Salyanov, V. A. Bykov, and M. Palumbo, Syst. Synthetic Biol. Recent Develop. Biotechnol. 4 (2013) (in press).Google Scholar
  7. 7.
    Z. Dogic, D. Frenkel, and S. Fraden, Phys. Rev. E 62(3), 3925 (2000).CrossRefGoogle Scholar
  8. 8.
    N. Khlebtsov and L. Dykman, Chem. Soc. Rev. 40(3), 1647 (2011).CrossRefGoogle Scholar
  9. 9.
    D. G. Duff, A. Baiker, and P. P. Edwards, Langmuir 9(9), 2301 (1993).CrossRefGoogle Scholar
  10. 10.
    Yu. M. Yevdokimov, S. G. Skuridin, and G. B. Lortkipanidze, Liq. Cryst. 12(1), 1 (1992).CrossRefGoogle Scholar
  11. 11.
    Yu. M. Yevdokimov, E. V. Shtykova, V. I. Calyanov, and S. G. Skupidin, Biophys. 58(2), 148 (2013).CrossRefGoogle Scholar
  12. 12.
    Yu. M. Yevdokimov, V. I. Salyanov, S. V. Semenov, and S. G. Skuridin, DNA Liquid-Crystalline Dispersions and Nanoconstructions (CRC Press, Boca Raton-London-New York, 2011).CrossRefGoogle Scholar
  13. 13.
    Yu. M. Yevdokimov, V. I. Salyanov, S. G. Skuridin, S. V. Semenov, and O. N. Kompanets, The CD Spectra of Double-Stranded DNA Liquid-Crystalline Dispersions (Nova Sci. Publ., New York, 2011).CrossRefGoogle Scholar
  14. 14.
    Yu. M. Evdokimov, V. I. Salyanov, E. I. Kats, and S. G. Skuridin, Acta Natur. 4(4), 80 (2012).Google Scholar
  15. 15.
    J. J. Storhoff, A. A. Lazarides, R. C. Mucic, C. A. Mirkin, R. L. Letsinger, and G. C. Schatz, J. Am. Chem. Soc. 122(19), 4640 (2000).CrossRefGoogle Scholar
  16. 16.
    H. Nakao, H. Shiigi, Y. Yamamoto, S. Tokonami, T. Nagaoka, S. Sugiyama, and T. Ohtani, Nano Lett. 3(10), 1391 (2003).CrossRefGoogle Scholar
  17. 17.
    Q. Wu, H. K. Kang, B. N. Oh, and J. Kim, J. Phys. Chem. C 116(17), 8020 (2012).CrossRefGoogle Scholar
  18. 18.
    N. H. Jang, Bull. Korean Chem. Soc. 23(12), 1790 (2002).CrossRefGoogle Scholar
  19. 19.
    W. J. Parak, T. Pellegrino, C. M. Micheel, D. Gerion, S. C. Williams, and A. P. Alivisatos, Nano Lett. 3(1), 33 (2003).CrossRefGoogle Scholar
  20. 20.
    J. Kasthuri, S. Poornima, and Joy Padma Dinseh, J. Biosci. Res. 2(1), 1 (2011).Google Scholar
  21. 21.
    R. D. Vengerovitch, Yu. V. Gudyma, and S. V. Varema, Semiconductors 35(12), 1378 (2001).CrossRefGoogle Scholar
  22. 22.
    V. Wiwanitkit, A. Sereemaspun, and R. Rojanathanes, Fertil. Steril 91(1), e7 (2009).CrossRefGoogle Scholar
  23. 23.
    S. T. Zakhidov, T. L. Marshak, E. A. Malonina, A. Yu. Kulibin, I. A. Zelenina, O. V. Pavlyuchenkova, V. M. Rudoi, O. V. Dement’eva, S. G. Skuridin, and Yu.M. Evdokimov, Biol. Membr. 27(4), 349 (2010).Google Scholar
  24. 24.
    P. Mulvaney, Langmuir 12(3), 788 (1996).CrossRefGoogle Scholar
  25. 25.
    T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, J. Phys. Chem. B 103(45), 9846 (1999).CrossRefGoogle Scholar
  26. 26.
    P. V. Kamat, J. Phys. Chem. B 106(32), 7729 (2002).CrossRefGoogle Scholar
  27. 27.
    B. N. Khlebtsov, V. P. Zharov, A. G. Melnikov, V. V. Tuchin, and N. G. Khlebtsov, Nanotecnology 17(20), 5167 (2006).CrossRefGoogle Scholar
  28. 28.
    M. Pelton, J. Aizpurua, and G. Bryant, Laser Photon. Rev. 2(3), 136 (2008).CrossRefGoogle Scholar
  29. 29.
    K. M. Mayer and J. H. Hafner, Chem. Rev. 111(6), 3828 (2011).CrossRefGoogle Scholar
  30. 30.
    N. G. Khlebtsov, J. Quant. Spectr. Radiat. Transfer 123, 184 (2013).CrossRefGoogle Scholar
  31. 31.
    N. G. Khlebtsov, A. G. Melnikov, V. A. Bogatyrev, and L. A. Dykman, in Photopolarimetry in Remote Sensing, Ed. by G. Videen, Ya. S. Yatskiv, and M. I. Mishchenko (Kluwer Acad. Publ., Dordrecht, 2004), pp. 265–308.Google Scholar
  32. 32.
    N. Harris, M. D. Arnold, M. G. Blaber, and M. J. Ford, J. Phys. Chem. C 113(7), 2784 (2009).CrossRefGoogle Scholar
  33. 33.
    N. G. Khlebtsov, L. A. Dykman, Ya. M. Krasnov, and A. G. Mel’nikov, Kolloidn. Zh. 62(6), 844 (2000).Google Scholar
  34. 34.
    Yu. M. Yevdokimov, S. G. Skuridin, V. I. Salyanov, V. A. Bykov, and M. Palumbo, Structural DNA Nanotechnology: Liquid-Crystalline Approach (Transworld Res. Network, Kerala, 2012).Google Scholar
  35. 35.
    L. A. Feigin and D. I. Svergun, Structure Analysis by Small-Angle X-Ray and Neutron Scattering (Plenum Press, New York, 1987).CrossRefGoogle Scholar
  36. 36.
    H. Hakkinen, in Gold Nanoparticles for Physics, Chemistry and Biology, Ed. by C. Louis and O. Pluchery (Imperial College Press, London, 2012), pp. 233–272.Google Scholar
  37. 37.
    K. C. Grabar, P. C. Smith, M. D. Musick, J. A. Davis, D. G. Walter, M. A. Jackson, A. P. Guthrie, and M. J. Natan, J. Am. Chem. Soc. 118(5), 1148 (1996).CrossRefGoogle Scholar
  38. 38.
    B. K. Vainshtein, Diffraction of X-rays by Chain Molecules (Elsevier, Amsterdam, London, New York, 1966).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • Yu. M. Yevdokimov
    • 1
  • S. G. Skuridin
    • 1
  • V. I. Salyanov
    • 1
  • V. I. Popenko
    • 1
  • E. V. Shtykova
    • 2
  • L. A. Dadinova
    • 2
  • V. V. Volkov
    • 2
  • N. G. Khlebtsov
    • 3
  • B. N. Khlebtsov
    • 3
  • E. I. Kats
    • 4
  1. 1.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  2. 2.Shubnikov Institute of CrystallographyRussian Academy of SciencesMoscowRussia
  3. 3.Institute of Biochemistry and Physiology of Plants and MicroorganismsRussian Academy of SciencesSaratovRussia
  4. 4.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations