Nanotechnologies in Russia

, Volume 9, Issue 1–2, pp 87–92 | Cite as

Preparation and physicochemical properties of Nicotinamide@AlOOH biocompatible composite based on sol-gel materials

  • Vladimir V. Vinogradov
  • Ya. M. Komova
  • A. V. Vinogradov
  • Vasiliy V. Vinogradov


This paper is devoted to studying the properties of the functional nanocomposite nicotinamide@boehmite. Nicotinamide is introduced directly into a sol of boehmite with the subsequent aging and drying. The results of obtaining high-purity boehmite sol prepared with the use of ultrasonic machining as a physical method of peptization are presented. The structure of the composite is studied with the help of a complex of methods: X-ray-phase analysis, IR-spectroscopy, electron microscopy, and the low-temperature adsorption-desorption of nitrogen. The release of nicotinamide is studied in a histidine buffer at pH = 7.4. Forty-eight percent of the introduced nicotinamide is released in the first 2 h with subsequent sharp retardation resulting in a complete release for a long time.


Nicotinamide Boehmite Prolonged Release Inorganic Polymer Valent Vibration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Radin, P. Ducheyne, T. Kamplain, and B. H. J. Tan, Biomed. Res. 57, 313 (2001).CrossRefGoogle Scholar
  2. 2.
    M. Ahola, E. S. Sailynoja, M. H. Raitavuo, M. M. Vaahtio, J. I. Salonen, and A. U. O. Yili-Urpo, Biomaterials 22, 2163 (2001).CrossRefGoogle Scholar
  3. 3.
    P. Kortesuo, M. Ahola, M. Kangas, T. A. Yli-Urpo, J. Kiesvaara, and M. Marvola, Int. J. Pharm. 221, 107 (2001).CrossRefGoogle Scholar
  4. 4.
    H. Bottcher, P. Slowik, and W. J. Suss, Sol-Gel Sci. Technol. 13, 277 (1998).CrossRefGoogle Scholar
  5. 5.
    E. M. Santos, S. Radin, and P. Ducheyne, Biomaterials 20, 1695 (1999).CrossRefGoogle Scholar
  6. 6.
    L. Siemenska, M. Ferguson, T. W. Zerda, and E. J. Couch, Sol-Gel Sci. Technol. 8, 1105 (1997).Google Scholar
  7. 7.
    M. Ahola, P. Kortesuo, I. Kangasniemi, T. J. Kiesvaara, and A. Yli-Urpo, Int. J. Pharm. 195, 219 (2000).CrossRefGoogle Scholar
  8. 8.
    T. Lopez, J. Manjarrez, D. Rembao, E. Vinogradova, A. Moreno, and R. D. Gonzalez, Mater. Lett. 60, 2903 (2006).CrossRefGoogle Scholar
  9. 9.
    T. Lopez, J. Sotelo, J. Navarrete, and J. A. Ascencio, Opt. Mater 29, 88 (2006).CrossRefGoogle Scholar
  10. 10.
    G. Sailaja, H. Hogen-Esch, A. North, J. Hays, and S. K. Mittal, Gene Therapy 9, 1722 (2002).CrossRefGoogle Scholar
  11. 11.
    R. Edelman, Rev. Infect. Dis. 2, 370–383 (1980).CrossRefGoogle Scholar
  12. 12.
    B. Xu, B. Xiao, Z. Yan, X. Sun, J. Sloan, S. L. Gonzalez-Cortes, F. Alshahrani, and M. L. H. Green, Micropor. Mesopor. Mat. 91, 293 (2006).CrossRefGoogle Scholar
  13. 13.
    Z. J. Liu, B. H. Liu, J. L. Kong, and J. Q. Deng, Anal. Chem. 72, 4707 (2000).CrossRefGoogle Scholar
  14. 14.
    M. Amoura, N. Nassif, C. Roux, J. Livage, and T. Coradin, Chem. Commun., 4015 (2007).Google Scholar
  15. 15.
    H. Martinez-Coria, X. Sun, S. S. Schreiber, L.M. Thompson, and F. M. LaFerla, J. Neurosci. 28, 11500 (2008).CrossRefGoogle Scholar
  16. 16.
    R. B. Elliott and H. P. Chase, Diabetologia 34, 362 (1991).CrossRefGoogle Scholar
  17. 17.
    T. Zaki, I. K. Khalid, and H. Hassan, Ceram. Int. 38, 2021 (2012).CrossRefGoogle Scholar
  18. 18.
    M. Sasani Ghamsari, Z. Ashor Said Mahzar, S. Radiman, A. M. Abdul Hamid, and S. Rahmani Khalilabad, Mater. Lett. 72, 32 (2012).CrossRefGoogle Scholar
  19. 19.
    Y. Huaming, L. Mingzhu, and O. Jing, Appl. Clay Sci. 47, 438 (2010).CrossRefGoogle Scholar
  20. 20.
    A. Boumaza, L. Favaro, J. Lédion, G. Sattonnay, J. B. Brubach, P. Berthet, A. M. Huntz, P. Roy, and R. Tétot, J. Solid State Chem. 182, 1171 (2009).CrossRefGoogle Scholar
  21. 21.
    D. M. Ibrahima and Y. M. Abu-Ayana, Mater. Chem. Phys. 111, 326 (2008).CrossRefGoogle Scholar
  22. 22.
    X. Li and T. A. King, J. Non-Cryst. Solids 204, 235 (1996).CrossRefGoogle Scholar
  23. 23.
    H. Yang, M. Liu, and J. Ouyang, Appl. Clay Sci. 47, 438 (2010).CrossRefGoogle Scholar
  24. 24.
    G. Steiner, S. Tunc, M. Maitz, and R. Salze, Anal. Chem. 79(4), 131 (2007).CrossRefGoogle Scholar
  25. 25.
    D. C. Lee, P. I. Haris, D. Chapman, and R. C. Mitchell, Biochemistry 29(39), 9185 (1990).CrossRefGoogle Scholar
  26. 26.
    E. B. Lindbland, Immunol. Cell Biol. 82, 497 (2004).CrossRefGoogle Scholar
  27. 27.
    C. J. Brinker and G. W. Scherer, Sol-Gel Science: the Physics and Chemistry of Sol-Gel Processing (Acad. Press, San Diego, 1990), pp. 212–213.Google Scholar
  28. 28.
    B. E. Yoldas, Am. Ceram. Soc. Bull. 54, 289 (1975).Google Scholar
  29. 29.
    R. J. Mumper, Z. Cui, and M. O. Oyewumi, J. Sci. Dispers, Technol. 24(3), 569 (2003).CrossRefGoogle Scholar
  30. 30.
    C. Monfardini and M. Veronese, Bioconjug. Chem. 9, 418 (1998).CrossRefGoogle Scholar
  31. 31.
    G. J. Kim and S. Nie, Mater. Today 8, 28 (2005).CrossRefGoogle Scholar
  32. 32.
    N. Z. Wu, D. Da, T. L. Rudoll, D. Needham, A. R. Whorton, and M. W. Dewhirst, Cancer Res. 53(16), 3765 (1993).Google Scholar
  33. 33.
    R. Ben-Knaz, R. Pedahzur, and D. Avnir, Adv. Funct. Mater. 20, 2324 (2010).CrossRefGoogle Scholar
  34. 34.
    P. Costa and J. M. Sousa Lobo, Eur. J. Pharm. Sci. 13, 123 (2001).CrossRefGoogle Scholar
  35. 35.
    O. Sinai and D. J. Avnir, Phys. Chem. B 113, 13901 (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • Vladimir V. Vinogradov
    • 1
  • Ya. M. Komova
    • 2
  • A. V. Vinogradov
    • 1
  • Vasiliy V. Vinogradov
    • 3
  1. 1.G.A. Krestov Institute of Solution ChemistryRussian Academy of SciencesIvanovoRussia
  2. 2.Ivanovo State Chemicotechnological UniversityIvanovoRussia
  3. 3.National Research University of Information Technologies, Mechanics and OpticsSt. PetersburgRussia

Personalised recommendations