Nanotechnologies in Russia

, Volume 8, Issue 9–10, pp 644–654 | Cite as

Structure of polylactide-modified silicasol nanocomposites based on thermodynamically compatible components

  • A. S. ZhiltsovEmail author
  • I. B. Meshkov
  • T. S. Kurkin
  • O. B. Gorbatsevich
  • V. V. Kazakova
  • A. A. Askadskii
  • O. A. Serenko
  • A. N. Ozerin
  • A. M. Muzafarov


The possibility of implementing entropic mixing for preparing nanocomposites based on thermodynamically compatible components was studied in this work. Polylactide was used as matrix polymer; molecular silicasols with modified surface were employed as a filler. The shell hydrophile of these particles decreases interfacial tension and prevents their aggregation in the bulk of the nanocomposite. A preliminary assessment of the thermodynamic compatibility of polylactide with the selected type of molecular silicasols was performed. The structure of obtained composites was studied by small-angle X-ray scattering. The necessity of modifying the nanoparticle surface by groups compatible with the matrix polymer, which makes it possible to prepare a composite where all filler is dispersed within the matrix to the nanoscale level without using supplementary dispersion techniques, was shown in the work.


Matrix Polymer Polylactic Acid Nanosized Particle Allyl Alcohol Thermodynamic Compatibility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Polymer Nanocomposites, Ed. by Yiu-Wing and Yu. Zhong-Zhen (Woodhead Publ., Boston, New York, Washington, 2006).Google Scholar
  2. 2.
    G. Cao and Y. Wang, Nanostructures and Nanomaterials. Synthesis, Properties and Applications (Word Sci., 2011).CrossRefGoogle Scholar
  3. 3.
    B. D. Summ and N. I. Ivanova, “Fields and methods of colloid chemistry in nanochemistry,” Usp. Khim. 69(11), 995–1008 (2000).CrossRefGoogle Scholar
  4. 4.
    M. E. Mackay, A. Tuteja, P. M. Duxbury, C. J. Hawker, B. V. H. Horn, Z. Guan, G. Chen, and R. S. Krishnan, “General strategies for nanoparticle dispersion,” Science 311, 1740–1743 (2006).CrossRefGoogle Scholar
  5. 5.
    A. V. Bystrova, N. V. Voronina, N. V. Gaevoi, E. V. Getmanova, V. M. Meshkov, O. B. Gorbatsevich, A. M. Muzafarov, A. N. Ozerin, E. V. Egorova, and E. A. Tatarinova, “Synthesis and control by molecular parameters of superbranch silicon-contained polymers and polymeric nanocomposites on their base,” Ross. Nanotekhnol. 3(5–6), 42–46 (2008).Google Scholar
  6. 6.
    A. M. Muzafarov, N. G. Vasilenko, E. A. Tatarinova, G. M. Ignat’eva, V. D. Myakushev, M. A. Obrezkova, O. B. Meshkov, N. V. Voronina, and O. V. Novozhilov, “Macromolecular nano-objects as a promising direction of polymer chemistry,” Polymer. Sci. C 53(1), 48 (2011).Google Scholar
  7. 7.
    R. G. Sinclair, “The case for polylactic acid as a commodity packaging plastic,” J. Macromolec. Sci. A 33, 585–597 (1996).CrossRefGoogle Scholar
  8. 8.
    J. Lunt, “Large-scale production, properties and commercial applications of polylactic acid polymers,” Polymer Degradation Stability 59, 145–152 (1998).CrossRefGoogle Scholar
  9. 9.
    R. A. Auras, B. Harte, S. Selke, and R. J. Hernandez, “Mechanical, physical, and barrier properties of poly(lactide) films,” J. Plastic Film Sheeting 19, 123–135 (2003).CrossRefGoogle Scholar
  10. 10.
    E. Masuhara, K. Kojima, and N. Tarumi, “Shika Zairyo Kenkyu-jo Hokoku,” Rep. Res. Inst. Dental Mater. 2, 18 (1954).Google Scholar
  11. 11.
    I. B. Meshkov, V. V. Kazakova, O. B. Gorbatcevich, N. V. Voronina, V. D. Myakouchev, and A. M. Muza- farov, “MQ-type polymers based on hyperbranched polyethoxysiloxane and molecular silicasoles,” Polym. Prep. 47(2), 1152 (2006).Google Scholar
  12. 12.
    A. A. Askadskii, Computational Materials Science of Polymers (Cambridge Int. Sci. Publ., Cambridge, 2003).Google Scholar
  13. 13.
    A. A. Askadskii, Physical Properties of Polymers—Prediction and Control (Gordon and Breach Publ., Amsterdam, 1996).Google Scholar
  14. 14.
    A. A. Askadskii, Yu. I. Matveev, and M. S. Matevosyan, Vysokomolek. Soed. A 32(10), 2157–2166 (1990).Google Scholar
  15. 15.
    Yu. I. Matveev and A. A. Askadskii, Vysokomolek. Soed. A 36(3), 436–443 (1994).Google Scholar
  16. 16.
    A. A. Askadskii and V. I. Kondrashchenko, Computer Polymer Material Science, Vol. 1: Atomic-Molecular Level (Nauchnyi Mir, Moscow, 1999) [in Russian].Google Scholar
  17. 17.
    D. I. Svergun and L. A. Feigin, X-Ray and Neutron Low-Angular Scattering (Nauka, Moscow, 1986) [in Russian].Google Scholar
  18. 18.
    D. I. Svergun, “Determination of the regularization parameter in indirect-transform methods using perceptual criteria,” J. Appl. Crystallogr. 25, 495–503 (1992).CrossRefGoogle Scholar
  19. 19.
    D. I. Svergun, “Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing,” Biophys. J. 76, 2879–2886 (1999).CrossRefGoogle Scholar
  20. 20.
    M. B. Kozin and D. I. Svergun, “Automated matching of high- and low-resolution structural models,” J. Appl. Crystallogr. 34, 33–41 (2001).CrossRefGoogle Scholar
  21. 21.
    L. J. Fetters, D. J. Lohes, and R. H. Colby, Physical Properties of Polymers Handbook (American Institute of Physics, Woodbury, NY, 1996).Google Scholar
  22. 22.
    B. K. Vainshtein, X-Rays Diffraction at Molecules Chains (Izd. Akademii Nauk SSSR, Moscow, 1963) [in Russian].Google Scholar
  23. 23.
    T. S. Kurkin, A. N. Ozerin, A. S. Kechek’yan, O. T. Gritsenko, L. A. Ozerina, G. G. Alkhanishvili, V. G. Sushchev, and V. Yu. Dolmatov, “The structure and properties of polymer composite fibers based on poly(vinyl alcohol) and nanodiamond of detonation synthesis,” Nanotech. Russ. 5(3–4), 340 (2010).CrossRefGoogle Scholar
  24. 24.
    G. Allegra, G. Raos, and M. Vacatello, “Theories and simulations of polymer-based nanocomposites: from chain statistics to reinforcement,” Prog. Polym. Sci. 33, 683–731 (2008).CrossRefGoogle Scholar
  25. 25.
    J. B. Hooper and K. S. Schweizer, “Theory of phase separation in polymer nanocomposites,” Macromolecules 39, 5133–5142 (2006).CrossRefGoogle Scholar
  26. 26.
    S. H. Wu, Polymer 26(12), 1855–1863 (1985).CrossRefGoogle Scholar
  27. 27.
    A. D. Pomogailo, A. S. Rozenberg, and I. E. Uflyand, Metals Nanoparticles in Polymers (Khimiya, Moscow, 2000) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • A. S. Zhiltsov
    • 1
    Email author
  • I. B. Meshkov
    • 1
  • T. S. Kurkin
    • 1
  • O. B. Gorbatsevich
    • 1
  • V. V. Kazakova
    • 1
  • A. A. Askadskii
    • 2
  • O. A. Serenko
    • 1
  • A. N. Ozerin
    • 1
  • A. M. Muzafarov
    • 1
  1. 1.Enikolopov Institute of Synthetic Polymeric MaterialsRussian Academy of SciencesMoscowRussia
  2. 2.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia

Personalised recommendations