Advertisement

Nanotechnologies in Russia

, Volume 8, Issue 1–2, pp 69–80 | Cite as

Composite materials based on graphene nanoplatelets and polypropylene derived via in situ polymerization

  • S. V. Pol’shchikov
  • P. M. Nedorezova
  • A. N. Klyamkina
  • V. G. Krashenninikov
  • A. M. Aladyshev
  • A. N. Shchegolikhin
  • V. G. Shevchenko
  • E. A. Sinevich
  • T. V. Monakhova
  • V. E. Muradyan
Article

Abstract

In recent years researchers have paid considerable attention to the creation of multifunctional polymer composite materials bearing nanoscale fillers. The introduction of nanoparticles into polymer matrices in relatively small concentrations (reaching 2.5 vol %) makes it possible to produce materials possessing better properties than the initial matrix polymers and conventional dispersion-filled composites. Carbon nanostructures are promising fillers for polymer nanocomposite materials: fullerenes, carbon nanotubes, nanofibers, and graphene nanoplatelets. A combination of structural, physicomechanical, and electrophysical properties of these fillers upon their introduction into polymer matrices affords the creation of composite materials possessing improved stress-strain, electro- and thermophysical characteristics, and noncombustibility.

Keywords

Raman Spectrum Filler Content Transmission Electron Micro Dielectric Permeability Carbon Filler 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306(5696), 666–669 (2004).CrossRefGoogle Scholar
  2. 2.
    H. Kim, A. A. Abdala, and C. Macosco, Macromolecules 43, 6515–6530 (2010).CrossRefGoogle Scholar
  3. 3.
    A. A. Koval’chuk, A. N. Shegolikhin, V. G. Shevchenko, P. M. Nedorezova, A. N. Klyamkina, and A. M. Aladyshev, Macromolecules 41, 3149–3156 (2008).CrossRefGoogle Scholar
  4. 4.
    N. S. Enikolopov, L. A. Novokshonova, F. S. Dyachkovskii, et al., USSR Inventor’s Certificate No. 763370 (1976); Bull. Izobret., No. 34, 129 (1980); US Patent No. 4241112 (1980).Google Scholar
  5. 5.
    F. S. D’yachkovskii and L. A. Novokshonova, Usp. Khim. 53(2), 200 (1984).Google Scholar
  6. 6.
    N. M. Galashina, P. M. Nedorezova, V. I. Tsvetkova, F. S. D’yachkovskii, and N. S. Enikolopov, Dokl. Akad. Nauk SSSR 3(278), 620–624 (1984).Google Scholar
  7. 7.
    P. M. Nedorezova, V. G. Shevchenko, A. N. Shchegolikhin, V. I. Tsvetkova, and Yu. M. Korolev, Vysokomolek. Soed. Ser. A 46(3), 426–436 (2004).Google Scholar
  8. 8.
    A. A. Koval’chuk, V. G. Shevchenko, A. N. Shegolikhin, P. M. Nedorezova, A. N. Klyamkina, and A. M. Aladyshev, Macromolecules 41, 7536–7542 (2008).CrossRefGoogle Scholar
  9. 9.
    S. V. Polschikov, P. M. Nedorezova, A. N. Klyamkina, A. A. Kovalchuk, A. M. Aladyshev, A. N. Shchegolikhin, V. G. Shevchenko, and V. E. Muradyan, J. Appl. Pol. Sci. 127, 904 (2013).CrossRefGoogle Scholar
  10. 10.
    Y. Huang, Y. Qin, Y. Zhou, H. Niu, Z. Z. Yu, and J. Y. Dong, Chem. Mater. 22, 4096–4102 (2010).CrossRefGoogle Scholar
  11. 11.
    S. Stankovich, R. D. Piner, X. Chen, N. Wu, S.-B. T. Nguyen, and R. S. Ruoff, J. Mater. Chem. 16, 155–158 (2006).CrossRefGoogle Scholar
  12. 12.
    W. Hummers and R. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).CrossRefGoogle Scholar
  13. 13.
    V. E. Muradyan, V. S. Romanova, A. P. Moravsky, Z. N. Parnes, and Yu. N. Novikov, Russ. Chem. Bull. 49(6), 1017–1019 (2000).CrossRefGoogle Scholar
  14. 14.
    P. M. Nedorezova, A. N. Shchegolikhin, V. I. Tsvetkova, and Yu. M. Korolev, Polymer Sci. Ser. A 46, 242–249 (2004).Google Scholar
  15. 15.
    W. Spaleck, F. Kuber, A. Winter, J. Rohrmann, B. Bochmann, M. Antberg, V. Dolle, and E. F. Paulus, Organometallics 13, 954 (1994).CrossRefGoogle Scholar
  16. 16.
    Yu. V. Kissin, Isospecific Polymerization of Olefins (Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1985).CrossRefGoogle Scholar
  17. 17.
    Yu. A. Shlyapnikov, S. G. Kiryushkin, and A. P. Mar’in, Antioxidation Stabilization for Polymers (Moscow, 1988) [in Russian].Google Scholar
  18. 18.
    H. Wang, Y. Wang, X. Cao, M. Feng, and G. Lan, J. Raman Spectrosc. 40, 1791–1796 (2009).CrossRefGoogle Scholar
  19. 19.
    M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cançado, A. Jorio, and R. Saito, Phys. Chem. Chem. Phys. 9, 1276–1291 (2007).CrossRefGoogle Scholar
  20. 20.
    A. C. Ferrari, Solid State Commun. 143, 47–57 (2007).CrossRefGoogle Scholar
  21. 21.
    I. L. Dubnikova, S. M. Berezina, V. G. Oshmyan, and V. N. Kuleznev, Vysokomolek. Soed. Ser. A 45(9), 1494–1507 (2003).Google Scholar
  22. 22.
    L. A. Novokshonova, P. N. Brevnov, V. G. Grinev, S. N. Chvalun, S. M. Lomakin, A. N. Shchegolikhin, and S. P. Kuznetsov, Ross. Nanotekhnol. 3(5–6), 86–99 (2008).Google Scholar
  23. 23.
    Ya. P. Kapachauskene, R. P. Yurevichene, and Yu. A. Shlyapnikov, Kinet. Katal. 8(1), 212 (1967).Google Scholar
  24. 24.
    T. V. Monakhova, P. M. Nedorezova, T. A. Bogaevskaya, V. I. Tsvetkova, and Yu. A. Shlyapnikov, Vysokomol. Soedin., Ser. A 30, 2415–2420 (1988).Google Scholar
  25. 25.
    A. A. Kovalchuk, V. G. Shevchenko, A. N. Shchegolikhin, P. M. Nedorezova, A. N. Klyamkina, and A. M. Aladyshev, J. Mater. Sci. 43, 7132–7140 (2008).CrossRefGoogle Scholar
  26. 26.
    L. Yunfeng, Z. Jiahua, W. Suying, R. Jongeum, W. Qiang, S. Luyi, and G. Zhanhu, Macromol. Chem. Phys. 212, 2429–2438 (2011).CrossRefGoogle Scholar
  27. 27.
    Z. Spitalsky, D. Tasis, K. Papagelis, and C. Galiotis, Progress Polymer Sci. 35, 357–401 (2010).CrossRefGoogle Scholar
  28. 28.
    J.-B. Kim, S.-K. Lee, and Ch.-G. Kim, Key Eng. Mater. 334–335, 837–840 (2007).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • S. V. Pol’shchikov
    • 1
  • P. M. Nedorezova
    • 2
  • A. N. Klyamkina
    • 1
  • V. G. Krashenninikov
    • 1
  • A. M. Aladyshev
    • 1
  • A. N. Shchegolikhin
    • 2
  • V. G. Shevchenko
    • 3
  • E. A. Sinevich
    • 3
  • T. V. Monakhova
    • 2
  • V. E. Muradyan
    • 4
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia
  3. 3.Enikolopov Institute of Synthetic Polymeric MaterialsRussian Academy of SciencesMoscowRussia
  4. 4.Institute of Problems of Chemical Physics, Chernogolovka BranchRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations