Advertisement

Nanotechnologies in Russia

, Volume 7, Issue 5–6, pp 213–226 | Cite as

Production and studies of properties of nanopowders on the basis of CeO2

  • V. G. Il’ves
  • S. Yu. Sokovnin
Article

Abstract

Nanopowders (NPds) of pure CeO2 of a specific surface area up to 210 m2/g and those doped with copper, carbon, and iron (≤1 wt % of dopant) of a specific surface area in the range 130–160 m2/g have been produced by evaporation with a pulsed electron beam. According to the X-ray phase analysis data, no secondary phases (aside from the cubic CeO2 phase) were found in the produced NPds. All the powders contained fine- and coarse-crystalline fractions differing in the size of their coherent scattering region (CSR) and in their amorphous component. The degree of crystallinity of the powders was not above 22%. The powders have a fractal structure and consist of agglomerates of sizes from dozens to hundreds of nanometers formed by crystalline nanoparticles (NPts) 3–5 nm in size with a very narrow particle size distribution. NPds have a high structural defectiveness degree, which was reflected in their magnetic properties. The room ferromagnetism was established in NPds of pure CeO2 − x and those doped with nonmagnetic elements (carbon and copper): here the ferromagnetic state in the CeO2-C system was established for the first time, whereas the magnetic moment on the carbon atom was 35-fold lower than the theoretical estimation. The ferromagnetic contribution to CeO2 NPd increases with a decrease in the NPt size and reaches 0.1 emu/g in CeO2-Fe NPd (x Fe = 0.54 wt %). It has been established that there is no direct dependence between magnetization and the content of iron ions in the CeO2-Fe-based NPds.

Keywords

Coherent Scattering Region Room Temperature Ferromagnetism Pulse Electron Beam Cerium Dioxide Micron Powder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. K. Ivanov, A. B. Shcherbakov, and A. V. Usatenko, “Structure-Sensitive Properties and Biomedical Applications of Nanodispersed Cerium Dioxide,” Russ. Chem. Rev. 78, 855 (2009).CrossRefGoogle Scholar
  2. 2.
    M. N. Guo, C. X. Guo, L. Y. Jin, Y. J. Wang, J. Q. Lu, and M. F. Luo, “Nano-Sized CeO2 with Extra-High Surface Area and Its Activity for CO Oxidation,” Mater. Lett. 64, 1638–1640 (2010).CrossRefGoogle Scholar
  3. 3.
    J. M. D. Coye and S. Chambers, “Oxide Dilute Magnetic Semiconductors-Fact or Fiction?,” MRS Bull. 33, 1053–1058 (2008).CrossRefGoogle Scholar
  4. 4.
    P. L. I. Keating, D. O. Scanlon, and G. W. Watson, “Intrinsic Ferromagnetism in CeO2: Dispelling the Myth of Vacancy Site Localization Mediated Superexchange,” J. Phys: Condens. Matter 21, 405502 (2009).CrossRefGoogle Scholar
  5. 5.
    B. B. Straumal, A. A. Myatiev, P. B. Straumal, et al., “Grain Boundary Layers in Nanocrystalline Ferromagnetic Zinc Oxide,” JETP Lett. 92, 396 (2010).CrossRefGoogle Scholar
  6. 6.
    B. B. Straumal, A. A. Mazilkin, S. G. Protasova, et al., “Magnetization Study of Nanograined Pure and Mn-Doped ZnO Films: Formation of A Ferromagnetic Grain-Boundary Foam,” Phys. Rev. B 79, 205206 (2009).CrossRefGoogle Scholar
  7. 7.
    J. M. D. Coey, K. Wongsaprom, J. Alaria, and M. Venkatesan, “Charge-Transfer Ferromagnetism in Oxide Nanoparticles,” J. Phys. D: Appl. Phys. 41, 134012 (2008).CrossRefGoogle Scholar
  8. 8.
    Ya. A. Kotov, S. Ya. Sokovnin, and C. K. Rhee, “Modernization of the Installation for Production of Nanopowders of Metal Oxides Using Pulsed Electron Beam,” in Proceedings of the 9th International Conference on Modification of Materials with Particle Beams and Plasma Flows (IAO SB RAS, Tomsk, 2008), p. 734.Google Scholar
  9. 9.
    Yu. A. Kotov, “The Electrical Explosion of Wire: AMethod for the Synthesis of Weakly Aggregated Nanopowders,” Nanotechnol. Russia 4, 415 (2009).CrossRefGoogle Scholar
  10. 10.
    P. Knauth, G. Schwitzgebel, A. Tschope, and S. J. Villain, “Emf Measurements on Nanocrystalline Copper-Doped Ceria,” Solid State Chem. 140, 295–299 (1998).CrossRefGoogle Scholar
  11. 11.
    M. Klimczak-Chmielowska, R. Chmielowski, A. Kopia, J. Kusinski, S. Villain, C. Leroux, and J.-R. Gavarri, “Multiphase CuOz-CeO2 − δ Thin Films by Pulsed Laser Deposition Technique: Experimental Texture Evolutions and Kinetics Modeling,” Solid Films 458, 98–107 (2004).CrossRefGoogle Scholar
  12. 12.
    S. A. Suevalov, XRLEdit — Editor of Primary Processing of Diffractometric Data, V. 2.98.2005. http://xray.physics.usu.ru
  13. 13.
    A. K. Shtol’ts, A. I. Medvedev, and L. V. Kurbatov, in X-Ray Analysis of Microtensions and the Size of Coherent Scattering in Polycrystalline Materials, the Electron School-Book, Ed. by L. V. Kurbatov (GOU VPO UGTU-UPI, Ekaterinburg, 2005), p. 23 [in Russian].Google Scholar
  14. 14.
    A. E. Baranchikov, O. S. Polezhaeva, V. K. Ivanov, and Y. D. Tretyakov, “Lattice Expansion and Oxygen Non-Stoichiometry of Nanocrystalline Ceria,” R. Soc. Chem., Cryst. Eng. Commun. 12, 3531–3533 (2010).Google Scholar
  15. 15.
    H. Qin, Z. Zhang, X. Liu, Y. Zhang, and J. Hu, “Room-Temperature Ferromagnetism in CuO Sol-Gel Powders and Films,” J. Magn. Magn. Mater. 322, 1994–1998 (2010).CrossRefGoogle Scholar
  16. 16.
    A. Y. Yermakov, M. A. Uimin, A. A. Mysik, V. B. Vykhodets, T. E. Kurennykh, V. I. Sokolov, V. S. Gaviko, N. N. Schegoleva, and N. B. Gruzdev, “Magnetism and Structure of Cu2O1 + x and 3d-Doped TiO2+x Nanopowders,” J. Magn. Magn. Mater. 310, 2102–2104 (2010).CrossRefGoogle Scholar
  17. 17.
    A. Soon, X. Y. Cui, B. Delley, S. H. Wei, and C. Stampfl, “Native Defect-Induced Multifarious Magnetism in Nonstoichiometric Cuprous Oxide: First-Principles Study of Bulk and Surface Properties of Cu2 − δO,” Phys. Rev. B 79, 035205 (2009).CrossRefGoogle Scholar
  18. 18.
    S. K. Sharma, M. Knobel, and C. T. Meneses, “Ferromagnetic Properties of Bulk Fe-Doped CeO2 Dilute Magnetic Semiconductors,” J. Korean Phys. Soc. 55, 1018–1021 (2009).CrossRefGoogle Scholar
  19. 19.
    Q. Y. Wen, H. W. Zhang, Y. Q. Song, Q. H. Yang, H. Zhu, and J. Q. Xiao, “Room-Temperature Ferromagnetism in Pure and Co Doped CeO2 Powders,” J. Phys.: Condens. Matter 19, 246205 (2007).CrossRefGoogle Scholar
  20. 20.
    Y. Liu, Z. Lockman, A. Aziz, and J. MacManus-Driscoll, “Size Dependent Ferromagnetism in Cerium Oxide (CeO2) Nanostructures Independent of Oxygen Vacancies,” J. Phys.: Condens. Matter 20, 165201 (2008).CrossRefGoogle Scholar
  21. 21.
    A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, and C. N. R. Rao, “Ferromagnetism as a Universal Feature of Nanoparticles of the Otherwise Nonmagnetic Oxides,” Phys. Rev. B 74, 161306 (2006).CrossRefGoogle Scholar
  22. 22.
    P. Slusser, D. Kumar, and A. Tiwari, “Unexpected Magnetic Behavior of Cu-Doped CeO2,” Appl. Phys. Lett. 96, 142506 (2010).CrossRefGoogle Scholar
  23. 23.
    P. K. Slusser, “Transition Metal Doped Oxide for Spintronics Applications,” Master of Science Thesis (Department of Materials Science and Engineering, Univ. of Utah, 2009), p. 95.Google Scholar
  24. 24.
    T. L. Makarova, “Magnetic Properties of Carbon Structures,” Semiconductors 38, 615 (2004).CrossRefGoogle Scholar
  25. 25.
    W. Z. Xiao, L. L. Wang, X. Liang, W. Qing, and L. Pana, “Ab Initio Studies of Half-Metallic Ferromagnetism in Carbon-Doped CeO2,” Solid State Commun. 150, 923–927 (2010).CrossRefGoogle Scholar
  26. 26.
    P. C. A. Brito, D. A. A. Santos, J. G. S. Duque, and M. A. Macêdo, “Structural and Magnetic Study of Fe-Doped CeO2,” Phys. B: Condens. Matter 405, 1821–1825 (2010).CrossRefGoogle Scholar
  27. 27.
    Z. D. Dohéví-Mitroví, N. Paunoví, M. Radoví, Z. V. Popoví, B. Matoví, B. Cekí, and V. Ivanovski, “Valence State Dependent Room-Temperature Ferromagnetism in Fe-Doped Ceria Nanocrystals,” Appl. Phys. Lett. 96, 203104 (2010).CrossRefGoogle Scholar
  28. 28.
    S. Kumar, G. W. Kim, B. H. Koo, S. K. Sharma, M. Knobel, and C. G. Lee, “Structural and Magnetic Study of A Dilute Magnetic Semiconductor: Fe Doped CeO2 Nanoparticles,” J. Nanosci. Nanotechnol. 11, 555–559 (2011).CrossRefGoogle Scholar
  29. 29.
    Q. Y. Wen, H. W. Zhang, Y. Q. Song, Q. H. Yang, H. Zhu, and J. Q. Xiao, “Room-Temperature Ferromagnetism in Pure and Co Doped CeO2 Powders, J. Phys.: Condens. Matter 19, 246205 (2007).CrossRefGoogle Scholar
  30. 30.
    A. Thurber, K. M. Reddy, and A. Punnoose, “High-Temperature Magnetic-Field-Induced Activation of Room-Temperature Ferromagnetism in Ce1 − xNixO2,” J. Appl. Phys. 101, 2709413 (2007).CrossRefGoogle Scholar
  31. 31.
    A. Thurber, K. M. Reddy, V. Shutthanandan, M. H. Engelhard, C. Wang, J. Hays, and A. Punnoose, “Ferromagnetism in Chemically Synthesized CeO2 Nanoparticles by Ni Doping,” Phys. Rev. B 76, 165206 (2007).CrossRefGoogle Scholar
  32. 32.
    S. Kumar, Y. J. Kim, B. H. Koo, and C. G. Lee, “Structural and Magnetic Properties of Ni Doped CeO2 Nanoparticles,” J. Nanosci. Nanotechnol. 10, 7204–7207 (2010).CrossRefGoogle Scholar
  33. 33.
    S. K. Misra, S. I. Andronenko, M. H. Engelhard, A. Thurber, K. M. Reddy, and A. Punnoose, “Role of Dopant Incorporation on the Magnetic Properties of Ce1 − xNixO2 Nanoparticles: an Electron Paramagnetic Resonance Study,” J. Appl. Phys. 103, 2833291 (2008).CrossRefGoogle Scholar
  34. 34.
    C. Xia, C. Hu, P. Chen, B. Wan, X. He, and Y. Tian, “Magnetic Properties and Photoabsorption of the Mn-Doped CeO2 Nanorods,” Mater. Res. Bull. 45, 794–798 (2010).CrossRefGoogle Scholar
  35. 35.
    S. Yu. Sokovnin, V. G. Il’ves, A. I. Medvedev, A. M. Murzakaev, A. V. Spirina, and M. A. Uimin, “Production of Al2O3-Al(Cu) Nanopowders by Pulsed Electron Beam Evaporation and Their Basic Characteristics,” in Proceedings of the 10th International Conference on Modification of Materials with Particle Beams and Plasma Flows (IAO SB RAS, Tomsk, 2010), p. 783.Google Scholar
  36. 36.
    V. G. Il’ves and S. Yu. Sokovnin, “Production of ZnO and Zn-ZnO Nanopowders Using Evaporation by a Pulsed Electron Beam in Low-Pressure Gas,” Nanotechnol. Russia 6, 137 (2011).CrossRefGoogle Scholar
  37. 37.
    S. Yu. Sokovnin, V. G. Il’ves, A. I. Medvedev, A. M. Murzakaev, and M. A. Uimin, “Pulse Electron Evaporation of ZnO-Zn Nanopowders Doped by Copper,” in Proceedings of the 4th All-Russia Conference on Nanomaterials, Moscow, 1–4 March 2011 (IMET RAN, Moscow, 2011), p. 574.Google Scholar
  38. 38.
    S. P. Bardakhanov, A. I. Korchagin, N. K. Kuksanov, A. V. Lavrukhin, R. A. Salimov, S. N. Fadeev, and V. V. Cherepkov, “Nanopowders Obtained by Evaporating Initial Substances in an Electron Accelerator at Atmospheric Pressure,” Dokl. Phys. 51, 353 (2006).CrossRefGoogle Scholar
  39. 39.
    M. S. Anwar, S. Kumar, F. Ahmed, N. Arshi, C. G. Lee, and B. H. Koo, “Hydrothermal Synthesis and Indication of Room Temperature Ferromagnetism in CeO2 Nanowires,” Mater. Lett. 65, 3098–3101 (2011).CrossRefGoogle Scholar
  40. 40.
    S. Y. Chen, Y. H. Lu, T. W. Huang, D. C. Yan, and C. L. Dong, “Oxygen Vacancy Dependent Magnetism of CeO2 Nanoparticles Prepared by Thermal Decomposition Method,” J. Phys. Chem. C 114, 19576–19581 (2010).CrossRefGoogle Scholar
  41. 41.
    Y. Liu, Z. Lockman, A. Aziz, and J. MacManus-Driscoll, “Size Dependent Ferromagnetism in Cerium Oxide (CeO2) Nanostructures Independent of Oxygen Vacancies,” Phys.: Condens. Matter 20, 165201 (2008).CrossRefGoogle Scholar
  42. 42.
    T. Dietl, “A Ten-Year Perspective on Dilute Magnetic Semiconductors and Oxides,” Nature Mater. 9, 965 (2010).CrossRefGoogle Scholar
  43. 43.
    Y. L. Zheng, C. M. Zhen, X. Q. Wang, L. Ma, X. L. Li, and D. L. Hou, “Room-Temperature Ferromagnetism Observed in Alumina Films,” Solid State Sci. 13, 1516–1519 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Institute of Electrophysics, Ural BranchRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations