Nanotechnologies in Russia

, Volume 7, Issue 1–2, pp 15–21

Naphthalene vapor sorption by polymer nanoparticles with molecularly imprinted shells

  • A. V. Koshkin
  • V. A. Sazhnikov
  • A. Yu. Men’shikova
  • G. A. Pankova
  • T. G. Evseeva
  • M. V. Alfimov


The process of naphthalene adsorption from the gas phase by layers of core-shell polymer nanoparticles obtained with the use of molecular imprinting methods is studied by the fluorescent analysis method. Within the pseudo-second-order kinetic model of sorption, data on the rate constants of fluorescence change are obtained, primary regularities of the sorption process are determined, and the presence of selective recognition sites in the shells of nanoparticles is proven.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. T. Williams, “Sampling and Analysis of Polycyclic Aromatic-Compounds from Combustions Systems—a Review,” J. Inst. Energy 63, 22–30 (1990).Google Scholar
  2. 2.
    R. W. Walters and R. G. Luthy, “Equilibrium Adsorption of Polycyclic Aromatic-Hydrocarbons from Water onto Activated Carbon,” Environ. Sci. Technol. 18, 395–403 (1984).CrossRefGoogle Scholar
  3. 3.
    M. Seredych and A. Gierak, “Influence of Water on Adsorption of Organic Compounds from its Aqueous Solutions on Surface of Synthetic Active Carbons,” Colloids Surf. A: Physicochem. Eng. Asp. 245, 61–67 (2004).CrossRefGoogle Scholar
  4. 4.
    C. O. Ania, B. Cabal, J. B. Parra, and J. Pis, “Importance of the Hydrophobic Character of Activated Carbons on the Removal of Naphthalene from the Aqueous Phase,” Adsorption Sci. Technol. 25, 155–167 (2007).CrossRefGoogle Scholar
  5. 5.
    C. Valderrama, X. Gamisans, F. X. D. L. Heras, J. L. Cortina, and A. Farran, “Kinetics of Polycyclic Aromatic Hydrocarbons Removal Using Hyper-Cross-Linked Polymeric Sorbents Macronet Hypersol MN200,” Reactive Funct. Polym. 67, 1515–1529 (2007)CrossRefGoogle Scholar
  6. 6.
    L. R. Radovic, C. Moreno-Castilla, and J. Rivera-Utrilla, “Carbon Materials as Adsorbents in Aqueous Solutions,” Chem. Phys. Carbon 27, 227–405 (2001).Google Scholar
  7. 7.
    F. L. Dickert, M. Tortschanoff, W. E. Bulst, and G. Fischerauer, “Molecularly Imprinted Sensor Layers for the Detection of Polycyclic Aromatic Hydrocarbons in Water,” Anal. Chem. 71, 4559–4563 (1999).CrossRefGoogle Scholar
  8. 8.
    N. Kirsch, J. P. Hart, D. J. Bird, R. W. Luxton, and D. V. McCalley, “Towards the Development of Molecularly Imprinted Polymer Based Screen-Printed Sensors for Metabolites of PAHs,” Analyst 126, 1936–1941 (2001).CrossRefGoogle Scholar
  9. 9.
    P. A. Lieberzeit, S. Gazda-Miarecka, K. Halikias, C. Schirk, J. Kauling, and F. L. Dickert, “Imprinting as a Versatile Platform for Sensitive Materials — Nanopatterning of the Polymer Bulk and Surfaces,” Sens. Actuat. B 111, 259–263 (2005).CrossRefGoogle Scholar
  10. 10.
    K. Sreenivasan, “Improving the Efficiency of Imprinting in Poly(HEMA) for Polyaromatic Hydrocarbon Using Silver Ions,” J. Appl. Polym. Sci. 109, 3275–3278 (2008).CrossRefGoogle Scholar
  11. 11.
    O. D. Gendrikson, A. V. Zherdev, and B. B. Dzantiev, “Molecularly Imprinted Polymers and their Application in Biochemical Analysis,” Usp. Biol. Khim. 46, 149–192 (2006).Google Scholar
  12. 12.
    A. Yu. Menshikova, Yu. E. Moskalenko, A. V. Gribanov, N. N. Shevchenko, V. V. Faraonova, A. V. Yakimanskii, M. Ya. Goikhman, N. L. Loretsyan, A. V. Koshkin, and M. v. Alfimov, “Sorption of Vapors of Aromatic Compounds by Cross-Linked Polymer Particles ContainingLuminophores: A Spectroscopic Study,” Russ. J. Appl. Chem. 83, 1997 (2010).CrossRefGoogle Scholar
  13. 13.
    A. Yu. Menshikova, T. G. Evseeva, M. V. Peretolchin, N. A. Chekina, and S. S. Ivanchev, “Emulsifier-Free Polymerization of Methyl Methacrylate with a Carboxyl-Containing Initiator,” Polym. Sci., Ser. A 43, 366 (2001).Google Scholar
  14. 14.
    A. Menshikova, T. Evseeva, N. Shevchenko, B. Shabsels, A. Yakimansky, and S. Ivanchev, “Monodisperse Particles Based on Copolymers of Methyl Methacrylate or Styrene with N-Vinylformamide,” Macromol. Symp. 281, 61–68 (2009).CrossRefGoogle Scholar
  15. 15.
    B. Cabal, C. O. Ania, J. B. Parra, and J. J. Pis, “Kinetics of Naphthalene Adsorption on an Activated Carbon: Comparison between Aqueous and Organic Media,” Chemosphere 76, 433–438 (2009).CrossRefGoogle Scholar
  16. 16.
    Y. Khambhaty, K. Mody, S. Basha, and B. Jha, “Kinetics, Equilibrium and Thermodynamic Studies on Biosorption of Hexavalent Chromium by Dead Fungal Biomass of Marine Aspergillus Niger,” Chem. Eng. J. 145, 489–495 (2009).CrossRefGoogle Scholar
  17. 17.
    Y. Khambhaty, K. Mody, S. Basha, and B. Jha, “Biosorption of Cr(VI) onto Marine Aspergillus Niger: Experimental Studies and Pseudo-Second Order Kinetics,” World J. Microbiol. Biotechnol. 25, 1413–1421 (2009).CrossRefGoogle Scholar
  18. 18.
    P. Pereztejeda, C. Yanes, and A. Maestre, “Solubility of Naphthalene in Water + Alcohol-Solutions at Various Temperatures,” J. Chem. Eng. Data 35, 244–246 (1990).CrossRefGoogle Scholar
  19. 19.
    J. Reza, A. Trejo, and L. E. Vera-Avila, “Determination of the Temperature Dependence of Water Solubilities of Polycyclic Aromatic Hydrocarbons by a Generator Column-on-Line Solid-Phase Extraction-Liquid Chromatographic Method,” Chemosphere 47, 933–945 (2002).CrossRefGoogle Scholar
  20. 20.
    P. A. Lieberzeit, K. Halikias, A. Afzal, and F. L. Dickert, “Polymers Imprinted with PAH Mixtures-Comparing Fluorescence and QCM Sensors,” Anal. Bioanal. Chem. 392, 1405–1410 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • A. V. Koshkin
    • 1
  • V. A. Sazhnikov
    • 1
  • A. Yu. Men’shikova
    • 2
  • G. A. Pankova
    • 2
  • T. G. Evseeva
    • 2
  • M. V. Alfimov
    • 1
  1. 1.Photochemistry CenterRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Macromolecular CompoundsRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations