Advertisement

Nanotechnologies in Russia

, Volume 6, Issue 11–12, pp 677–704 | Cite as

Supramolecular complexes of spin-labeled and luminescent molecules with cyclodextrins

  • V. A. Livshits
  • V. B. Nazarov
  • I. V. Ionova
  • V. G. Avakyan
  • B. G. Dzikovskii
  • S. P. Gromov
  • M. V. Alfimov
Review

Abstract

Studies on the structure, molecular dynamics, and spectral-luminescent properties of the guesthost cyclodextrin (CD) complexes which were carried out in the Photochemistry Center and the Institute of Chemical Problems, Russian Academy of Sciences (RAS), in the period of 2000–2011 are reviewed. In a series of studies, the binary and ternary CD complexes in aqueous solutions, in the solid phase, and on silicawater and silica-gas interfaces were investigated. The spin-labeled analogs of the biologically active molecules (indoles, fatty acids, and cholesterol) were used as models of the functional guest molecules in these complexes. The use of various EPR approaches made it possible to determine the character of rotational motion and its quantitative parameters (rotational frequencies and angular amplitudes) for guest molecules in the CD cavities and to reveal the effects of the second and third guest molecules and of the covalent binding of CDs to silica microspheres on molecular dynamics, as well as the hydrophobicity of the environment for the spin-labeled molecules. The properties of the β-CD and γ-CD complexes of naphthalene and its derivatives were studied by fluorescence and phosphorescence methods; the effects of the cage compounds (adamantane, carborane, and cyclohexane (CH)), the low-molecular-mass compounds (acetone), and the adsorption on silica of the polymer CD on the appearance and the line shape of the naphthalene excimer fluorescence (EF) and the long-lived phosphorescence were analyzed.

Keywords

Inclusion Complex Guest Molecule Spin Probe Supramolecular Complex Rotational Mobility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. A. Connors, Chem. Rev. (Washington) 97, 1325–1358 (1997).Google Scholar
  2. 2.
    S. Loethen, J. M. Kim, and D. H. Thomson, Polym. Rev. 47, 383–418 (2007).CrossRefGoogle Scholar
  3. 3.
    J. Szejtli, Chem. Rev. (Washington) 98, 1743–1754 (1998).Google Scholar
  4. 4.
    K. Harata, Chem. Rev. (Washington) 98, 1803–1828 (1998).Google Scholar
  5. 5.
    W. Saenger, J. Jakob, K. Gessler, T. Steiner, D. Hoffmann, H. Sanbe, K. Koizumi, S. M. Smith, and T. Takaha, Chem. Rev. (Washington) 98, 1787–1802 (1998).Google Scholar
  6. 6.
    M. V. Rekharsky and Y. Inoue, Chem. Rev. (Washington) 98, 1875–1918 (1998).Google Scholar
  7. 7.
    K. Uekimata, F. Hirayama, and T. Irie, Chem. Rev. (Washington) 98, 2045–2076 (1998).Google Scholar
  8. 8.
    A. Douhal, in Cyclodextin Materials Photochemistry, Photophysics, and Photobiology, Ed. by A. Douhal (Elsevier, Amsterdam, 2006), Vol. 1. ISBN-10:-0-444-52780-X.Google Scholar
  9. 9.
    B. V. Nazarov, V. I. Gerko, and M. V. Alfimov, JETP Lett. 65,(7), 528–531 (1997).CrossRefGoogle Scholar
  10. 10.
    K. Flohr, R. M. Patton, and E. T. Kaiser, J. Am. Chem. Soc. 97, 1209–1218 (1975).CrossRefGoogle Scholar
  11. 11.
    H. Karoui and P. Tordo, Tetrahedron Lett. 45, 1043–1045 (2004).CrossRefGoogle Scholar
  12. 12.
    G. B. Birrell, S. P. Van, and O. H. Griffith, J. Am. Chem. Soc. 95, 2451–2458 (1973).CrossRefGoogle Scholar
  13. 13.
    J. Martinie, J. Michon, and A. Rassat, J. Am. Chem. Soc. 97, 1818–1823 (1975).CrossRefGoogle Scholar
  14. 14.
    J. Michon and A. Rassat, J. Am. Chem. Soc. 101, 4337–4339 (1979).CrossRefGoogle Scholar
  15. 15.
    M. P. Eastman, B. Freiha, C. C. Hsu, K. C. Lum, and C. A. Chang, J. Phys. Chem. 91, 1953–1956 (1987).CrossRefGoogle Scholar
  16. 16.
    Y. Kotake and E. G. Janzen, J. Am. Chem. Soc. 111, 7319–7323 (1989).CrossRefGoogle Scholar
  17. 17.
    G. Gagnaire, J. Michon, and J. L. Pierre, New J. Chem. 16, 915–918 (1992).Google Scholar
  18. 18.
    V. A. Livshits, B. G. Dzikovskii, A. B. Shapiro, and M. V. Alfimov, Dokl. Phys. Chem. 389(4–6), 90–93 (2003).CrossRefGoogle Scholar
  19. 19.
    V. A. Livshits, B. G. Dzikovskii, V. G. Avakyan, E. A. Samardak, E. Yu. Polyakova, V. Yu. Rudyak, and M. V. Alfimov, Russ. Chem. Bull. 54(5), 1169–1177 (2005).CrossRefGoogle Scholar
  20. 20.
    H. W. Frijlink, A. C. Eissens, N. R. Hefting, K. Poelstra, C. F. Lerk, and D. K. F. Meijer, Pharm. Res. 8, 9–16 (1991).CrossRefGoogle Scholar
  21. 21.
    P. R. Maulik and G. C. Shipley, Biochemistry 35, 8025–8034 (1996).CrossRefGoogle Scholar
  22. 22.
    U. Klein, G. Gimpl, and F. Fahrenholz, Biochemistry 34, 13784–13793 (1995).CrossRefGoogle Scholar
  23. 23.
    A. Becher, J. H. White, and R. A. J. McIlhinney, J. Neurochem. 79, 787–795 (2001).CrossRefGoogle Scholar
  24. 24.
    V. A. Livshits, I. V. Demisheva, and M. V. Alfimov, Nanotechnol. Russ. 3(7–8), 398–407 (2008).CrossRefGoogle Scholar
  25. 25.
    A. Harada, Acc. Chem. Res. 34, 456–464 (2001).CrossRefGoogle Scholar
  26. 26.
    H. Schlenk and D. M. Sand, J. Am. Chem. Soc. 83, 2312–2320 (1961).CrossRefGoogle Scholar
  27. 27.
    J. Szejtli and E. Banky-Eloed, Staerke 27, 368–376 (1975).CrossRefGoogle Scholar
  28. 28.
    R. I. Gelb and L. M. Schwarz, J. Inclusion Phenom. Mol. Recognit. Chem. 7, 465–476 (1989).CrossRefGoogle Scholar
  29. 29.
    L. Szente, J. Szejtli, J. Szeman, and L. Kato, J. Inclusion Phenom. Mol. Recognit. Chem. 16, 339–354 (1993).CrossRefGoogle Scholar
  30. 30.
    J. Lopez-Nicolas, A. Sanchez-Ferrer, and F. Garcia-Carmona, Biochem. J. 308, 151–154 (1995).Google Scholar
  31. 31.
    J. P. Slotte and S. Illman, Langmuir 12, 5664–5668 (1996).CrossRefGoogle Scholar
  32. 32.
    V. A. Livshits, O. V. Maksimova, V. Yu. Rudyak, V. G. Avakyan, and M. V. Alfimov, Ross. Nanotekhnol. 2(9–10), 29–39 (2007).Google Scholar
  33. 33.
    J. A. Ripmeester, C. I. Ratcliffe, and I. G. Cameron, Carbohydr. Res. 192, 69–81 (1989).CrossRefGoogle Scholar
  34. 34.
    S. J. Kitchin and T. K. Halstead, Solid State Nucl. Magn. Reson. 7, 27–44 (1996).CrossRefGoogle Scholar
  35. 35.
    J. A. Ripmeester, Supramol. Chem. 2, 89–91 (1993).CrossRefGoogle Scholar
  36. 36.
    J. S. Heyes, N. J. Clayden, and C. M. Dobson, Carbohydr. Res. 233, 1–14 (1992).CrossRefGoogle Scholar
  37. 37.
    V. A. Livshits, B. G. Dzikovskii, E. A. Samardak, and M. V. Alfimov, Russ. Chem. Bull. 55(2), 238–246 (2006).CrossRefGoogle Scholar
  38. 38.
    S. Hashimoto and J. K. Thomas, J. Am. Chem. Soc. 107, 4655–4662 (1985).CrossRefGoogle Scholar
  39. 39.
    J. Ding, T. Steiner, and W. Saenger, Acta Crystallogr., Sect. B: Struct. Sci. 47, 731–738 (1991).CrossRefGoogle Scholar
  40. 40.
    C. Retna Raj and R. Ramaraj, Chem. Phys. Lett. 273, 285–290 (1997).CrossRefGoogle Scholar
  41. 41.
    E. Schneiderman, B. Perly, E. Brooks, and A. M. Stalcup, J. Inclusion Phenom. Macrocyclic Chem. 43, 43–50 (2002).CrossRefGoogle Scholar
  42. 42.
    O. Massot, M. Mir, J. Bourdelande, and J. Marquet, Phys. Chem. Chem. Phys. 4, 216–223 (2002).CrossRefGoogle Scholar
  43. 43.
    G. Pistolis and A. Malliaris, J. Phys. Chem. B 108, 2846–2850 (2004).CrossRefGoogle Scholar
  44. 44.
    V. A. Livshits, I. V. Demisheva, B. G. Dzikovskii, V. G. Avakyan, and M. V. Alfimov, Russ. Chem. Bull. 55(12), 2161–2173 (2006).CrossRefGoogle Scholar
  45. 45.
    I. V. Demisheva, V. A. Livshits, and M. V. Alfimov, Russ. Chem. Bull. 55(12), 2174–2180 (2006).CrossRefGoogle Scholar
  46. 46.
    B. Dzikovski, D. Tipikin, V. Livshits, K. Earle, and J. Freed, Phys. Chem. Chem. Phys. 11, 6676–6688 (2009).CrossRefGoogle Scholar
  47. 47.
    V. B. Nazarov, V. A. Avakyan, and M. V. Alfimov, Ross. Nanotekhnol. 2(7–8), 68–82 (2007).Google Scholar
  48. 48.
    S. Hamai, Bull. Chem. Soc. Jpn. 55, 2721–2729 (1982).CrossRefGoogle Scholar
  49. 49.
    V. B. Nazarov, V. G. Avakyan, T. G. Vershinnikova, and M. V. Alfimov, Russ. Chem. Bull. 49(10), 1699–1706 (2000).CrossRefGoogle Scholar
  50. 50.
    V. G. Avakyan, V. B. Nazarov, T. G. Vershinnikova, V. Y. Rudyak, and M. V. Alfimov, Book of Abstracts of the International Conference “Organic Nanophotonics” (ICON-RUSSIA-2009), St. Petersburg, Russia, June 21–28, 2009 (St. Petersburg, 2009), p. 95.Google Scholar
  51. 51.
    V. B. Nazarov, V. G. Avakyan, T. G. Vershinnikova, V. Yu. Rudyak, and M. V. Alfimov, in Abstract of Papers of the 20th Symposium “Modern Chemical Physics,” Tuapse, Krasnodar region, Russia, September 15–26, 2008 (Tuapse, 2008), pp. 284–285; V. B. Nazarov, V. G. Avakyan, T. G. Vershinnikova, V. Yu. Rudyak, and M. V. Alfimov, in Abstract of Papers of the 22nd Symposium “Modern Chemical Physics,” Tuapse, Krasnodar region, Russia, September 24–October 4, 2010 (Tuapse, 2010), p. 16.Google Scholar
  52. 52.
    V. B. Nazarov, V. G. Avakyan, V. Y. Rudyak, M. V. Alfimov, and T. G. Vershinnikova, J. Lumin. 131, 1932–1938 (2011).CrossRefGoogle Scholar
  53. 53.
    V. Yu. Rudyak and V. G. Avakyan, Fast and Efficient Modification of Semiempirical Quantum-Chemical Method PM3 (in press).Google Scholar
  54. 54.
    V. B. Nazarov, V. I. Gerko, and T. G. Vershinnikova, Russ. Chem. Bull. 44(10), 1886–1889 (1995).CrossRefGoogle Scholar
  55. 55.
    V. B. Nazarov, V. I. Gerko, and M. V. Alfimov, Russ. Chem. Bull. 45(9), 2109–2112 (1996).CrossRefGoogle Scholar
  56. 56.
    V. B. Nazarov, V. G. Avakyan, M. V. Alfimov, and T. G. Vershinnikova, Russ. Chem. Bull. 52(4), 916–922 (2003).CrossRefGoogle Scholar
  57. 57.
    V. B. Nazarov, V. G. Avakyan, E. I. Bagrii, T. G. Vershinnikova, and M. V. Alfimov, Russ. Chem. Bull. 54(12), 2752–2756 (2005).CrossRefGoogle Scholar
  58. 58.
    V. B. Nazarov, V. G. Avakyan, S. P. Gromov, M. V. Fomina, T. G. Vershinnikova, and M. V. Alfimov, Russ. Chem. Bull. 53(11), 2525–2531 (2004).CrossRefGoogle Scholar
  59. 59.
    V. B. Nazarov, V. G. Avakyan, S. P. Gromov, M. V. Fomina, T. G. Vershinnikova, V. Yu. Rudyak, and M. V. Alfimov, Russ. Chem. Bull. 56(2), 281–289 (2007).CrossRefGoogle Scholar
  60. 60.
    V. B. Nazarov, V. G. Avakyan, S. P. Gromov, A. I. Vedernikov, M. V. Fomina, T. G. Vershinnikova, V. Yu. Gak, N. A. Lobova, V. Yu. Rudyak, and M. V. Alfimov, Russ. Chem. Bull. 59(5), 941–953 (2010).CrossRefGoogle Scholar
  61. 61.
    S. P. Gromov, V. B. Nazarov, V. G. Avakyan, M. V. Fomina, A. I. Vedernikov, L. G. Kuz’mina, T. G. Vershinnikova, N. A. Lobova, V. Yu. Rudyak, M. V. Alfimov, and J. A. K. Howard, J. Photochem. Photobiol., A 217, 87–99 (2011).CrossRefGoogle Scholar
  62. 62.
    W. Jin and J. D. Brennan, Anal. Chim. Acta 461, 1–36 (2002).CrossRefGoogle Scholar
  63. 63.
    A. C. Pierre, Biocatal. Biotransform. 22, 145–170 (2004).CrossRefGoogle Scholar
  64. 64.
    A. Burns, P. Sengupta, T. Zedayko, B. Baird, and U. Wiesner, Small 2, 723–726 (2006).CrossRefGoogle Scholar
  65. 65.
    A. van Blaaderen and A. Vrij, J. Colloid Interface Sci. 156, 1–18 (1993).CrossRefGoogle Scholar
  66. 66.
    W. Stoeber, A. Fink, and E. Bohn, J. Colloid Interface Sci. 26, 62–69 (1968).CrossRefGoogle Scholar
  67. 67.
    A. Burns, H. Ow, and U. Wiesner, Chem. Soc. Rev. 35, 1028–1042 (2006).CrossRefGoogle Scholar
  68. 68.
    T. Akiyama, T. Hishiya, H. Asanuma, and M. Komiyama, J. Inclusion Phenom. Macrocyclic Chem. 41, 149–153 (2001).CrossRefGoogle Scholar
  69. 69.
    D. V. Shamshurin, E. N. Shapovalova, and O. A. Shpigun, Vestn. Mosk. Univ., Ser. 2: Khim. 45, 180–185 (2004).Google Scholar
  70. 70.
    N. A. El’tekova and Yu. A. El’tekov, Russ. J. Phys. Chem. A 81(1), 78–82 (2007).CrossRefGoogle Scholar
  71. 71.
    L. Berliner, in Spin Labeling: Theory and Applications, Ed. by L. Berliner (Academic, New York, 1976; Mir, Moscow, 1979).Google Scholar
  72. 72.
    L. Berliner, in Biological Magnetic Resonance, Vol. 8: Spin Labeling: Theory and Applications, Ed. by L. Berliner and J. Reuben (Plenum, London, 1989), Part 1.Google Scholar
  73. 73.
    O. Grinberg, in Biological Magnetic Resonance, Vol. 22: Very High Frequency ESR/EPR, Ed. by O. Grinberg and L. Berliner (Kluwer, New York, 2004).Google Scholar
  74. 74.
    V. A. Livshits, I. V. Demisheva, B. B. Meshkov, V. P. Tsybyshev, and M. V. Alfimov, Nanotechnol. Russ. 4(1–2), 45–54 (2009).CrossRefGoogle Scholar
  75. 75.
    I. V. Ionova, M. V. Alfimov, and V. A. Livshits, Nanotechnol. Russ. 6(1–2), 88–95 (2011).CrossRefGoogle Scholar
  76. 76.
    T. Ogoshi and A. Harada, Sensors 8, 4961–4982 (2008).CrossRefGoogle Scholar
  77. 77.
    I. Suzuki, T. Osa, and A. Ueno, J. Am. Chem. Soc. 115, 5035–5040 (1993).CrossRefGoogle Scholar
  78. 78.
    I. V. Ionova, M. V. Alfimov, and V. A. Livshits, Nanotechnol. Russ. 6(1–2), 96–107 (2011).CrossRefGoogle Scholar
  79. 79.
    A. Khan, P. Forgo, K. Stine, and V. Souza, Chem. Rev. (Washington) 97, 1977–1996 (1998).Google Scholar
  80. 80.
    T. N. Phan, M. Bacquet, and M. Morcellet, J. Inclusion Phenom. Macrocyclic Chem. 38, 345–359 (2000).CrossRefGoogle Scholar
  81. 81.
    W. Xu, J. N. Demas, B. A. DeGraff, and M. Whaley, J. Phys. Chem. 97, 6546–6554 (1993).CrossRefGoogle Scholar
  82. 82.
    X. Li, F. E. Tay, J. Li, and X. Su, Sens. Actuators, B 119, 220–226 (2006).CrossRefGoogle Scholar
  83. 83.
    K. Balogh, N. Szanislo, K. Otta, and E. Fenivesi, J. Inclusion Phenom. Mol. Recognit. Chem. 57, 457–462 (2007).CrossRefGoogle Scholar
  84. 84.
    M. Kim, J. D. Way, and R. M. Baldwin, Korean J. Chem. Eng. 19, 876–879 (2002).CrossRefGoogle Scholar
  85. 85.
    R. L. Huq, P. J. Mercier, and M. A. Kooyman, Chem. Mater. 13, 4512–4519 (2001).CrossRefGoogle Scholar
  86. 86.
    A. Bibby and L. Mercier, Green Chem. 5, 15–19 (2003).CrossRefGoogle Scholar
  87. 87.
    L. V. Voronina, V. A. Livshits, and M. V. Alfimov, Nanotechnol. Russ. 6(7–8), 444–455 (2011).CrossRefGoogle Scholar
  88. 88.
    B. B. Meshkov, V. P. Tsybyshev, V. B. Nazarov, M. V. Alfimov, and V. A. Livshits, Nanotechnol. Russ. 6(5–6), 275–285 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • V. A. Livshits
    • 1
  • V. B. Nazarov
    • 2
  • I. V. Ionova
    • 1
  • V. G. Avakyan
    • 1
  • B. G. Dzikovskii
    • 1
  • S. P. Gromov
    • 1
  • M. V. Alfimov
    • 1
  1. 1.Photochemistry CenterRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations