Nanotechnologies in Russia

, Volume 6, Issue 5–6, pp 311–322 | Cite as

Electrocatalysts for fuel cells synthesized in supercritical carbon dioxide

  • T. E. Grigor’ev
  • E. E. Said-Galiev
  • A. Yu. Nikolaev
  • M. S. Kondratenko
  • I. V. Elmanovich
  • M. O. Gallyamov
  • A. R. Khokhlov


We applied the method of directly depositing an organometallic precursor from a solution in supercritical carbon dioxide on a dispersed carbon substrate surface followed by reduction to obtain a number of electrocatalytic materials in the form of nanoscale platinum particles on dispersed carbon supports (Vulcan XC72r carbon black, acetylene black, nanotubes). The synthesized materials persistently showed a monodisperse size distribution of platinum particles with an average diameter of 2–3 nm, regardless of the substrate nature, and a uniform distribution over the support surface. The synthesized electrocatalysts (ECs) were tested as part of an operating cathode electrode of a phosphoric acid fuel cell (FC) with a PBI matrix. In this case, the membrane-electrode assembly with this cathode showed current-voltage characteristics as good as the reference characteristics achieved with electrodes produced by BASF.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. J. Watkins and T. J. McCarthy, “Polymer/Metal Nanocomposite Synthesis in Supercritical CO2,” Chem. Mater. 7(11), 1991–1994 (1995).CrossRefGoogle Scholar
  2. 2.
    E. N. Sobol, V. N. Bagratashvili, V. K. Popov, A. E. Sobol, E. E. Said-Galiev, and L. N. Nikitin, “Kinetics of Diffusion of Metalloorganic Compounds in Polymers from Supercritical CO2 Solutions,” Zh. Fiz. Khim. 72(1), 28–31 (1998) [Russ. J. Phys. Chem. A 72 (1), 23–26 (1998)].Google Scholar
  3. 3.
    E. N. Sobol’, V. N. Bagratashvili, A. E. Sobol’, and S. M. Howdle, “Kinetics of Polymer Impregnation in Supercritical Media,” Dokl. Akad. Nauk 356(4–6), 777–780 (1997) [Dokl. Phys. Chem. 356 (4–6), 346–348 (1997)].Google Scholar
  4. 4.
    C. Erkey, “Preparation of Metallic Supported Nanoparticles and Films Using Supercritical Fluid Deposition,” J. Supercrit. Fluids 47, 517–522 (2009).CrossRefGoogle Scholar
  5. 5.
    P. H. Tewari, A. J. Hunt, and K. D. Lofftus, “Ambient-Temperature Supercritical Drying of Transparent Silica Aerogels,” Mater. Lett. 3(9–10), 363–367 (1985).CrossRefGoogle Scholar
  6. 6.
    N. E. Fernandes, S. M. Fisher, J. C. Poshusta, D. G. Vlachos, M. Tsapatsis, and J. J. Watkins, “Reactive Deposition of Metal Thin Films within Porous Supports from Supercritical Fluids,” Chem. Mater. 13(6), 2023–2031 (2001).CrossRefGoogle Scholar
  7. 7.
    A. I. Cooper, “Recent Developments in Materials Synthesis and Processing Using Supercritical CO2,” Adv. Mater. (Weinheim) 13(14), 1111–1114 (2001).CrossRefGoogle Scholar
  8. 8.
    Y. Zhang, D. Kang, C. Saquing, M. Aindow, and C. Erkey, “Supported Platinum Nanoparticles by Supercritical Deposition,” Ind. Eng. Chem. Res. 44(11), 4161–4164 (2005).CrossRefGoogle Scholar
  9. 9.
    Y. Zhang and C. Erkey, “Preparation of Platinum-Nafion-Carbon Black Nanocomposites via a Supercritical Fluid Route as Electrocatalysts for Proton Exchange Membrane Fuel Cells,” Ind. Eng. Chem. Res. 44(14), 5312–5317 (2005).CrossRefGoogle Scholar
  10. 10.
    Y. Zhang and C. Erkey, “Preparation of Supported Metallic Nanoparticles Using Supercritical Fluids: A Review,” J. Supercrit. Fluids 38(2), 252–267 (2006).CrossRefGoogle Scholar
  11. 11.
    C. H. Yen, K. Shimizu, Y.-Y. Lin, F. Bailey, I. F. Cheng, and C. M. Wai, “Chemical Fluid Deposition of Pt-Based Bimetallic Nanoparticles on Multiwalled Carbon Nanotubes for Direct Methanol Fuel Cell Application,” Energy Fuels 21(4), 2268–2271 (2007).CrossRefGoogle Scholar
  12. 12.
    W. Zhou and J. Y. Lee, “Highly Active Core-Shell Au@Pd Catalyst for Formic Acid Electrooxidation,” Electrochem. Commun. 9(7), 1725–1729 (2007).CrossRefGoogle Scholar
  13. 13.
    A. Bayrakceken, A. Smirnova, U. Kitkamthorn, M. Aindow, L. Türker, I. Erolu, and C. Erkey, “Pt-Based Electrocatalysts for Polymer Electrolyte Membrane Fuel Cells Prepared by Supercritical Deposition Technique,” J. Power Sources 179(2), 532–540 (2008).CrossRefGoogle Scholar
  14. 14.
    H. Zhao, L. Li, J. Yang, and Y. Zhang, “Co@Pt-Ru Core-Shell Nanoparticles Supported on Multiwalled Carbon Nanotube for Methanol Oxidation,” Electrochem. Commun. 10(10), 1527–1529 (2008).CrossRefGoogle Scholar
  15. 15.
    Y. Zhang, B. Cangul, Y. Garrabos, and C. Erkey, “Thermodynamics and Kinetics of Adsorption of Bis(2,2,6,6-Tetramethyl-3,5-Heptanedionato) (1,5-Cyclooctadiene) Ruthenium(II) on Carbon Aerogel from Supercritical CO2 Solution,” J. Supercrit. Fluids 44(1), 71–77 (2008).CrossRefGoogle Scholar
  16. 16.
    B. Cangul, L. C. Zhang, M. Aindow, and C. Erkey, “Preparation of Carbon Black Supported Pd, Pt, and Pd-Pt Nanoparticles Using Supercritical CO2 Deposition,” J. Supercrit. Fluids 50(1), 82–90 (2009).CrossRefGoogle Scholar
  17. 17.
    M.-K. Min, J. Cho, K. Cho, and H. Kim, “Particle Size and Alloying Effects of Pt-Based Alloy Catalysts for Fuel Cell Applications,” Electrochim. Acta 45(25–26), 4211–4217 (2000).CrossRefGoogle Scholar
  18. 18.
    N. P. Lebedeva, M. T. M. Koper, J. M. Feliu, and R. A. van Santen, “Role of Crystalline Defects in Electrocatalysis: Mechanism and Kinetics of CO Adlayer Oxidation on Stepped Platinum Electrodes,” J. Phys. Chem. B 106(50), 12938–12947 (2002).CrossRefGoogle Scholar
  19. 19.
    F. Maillard, S. Schreier, M. Hanzlik, E. R. Savinova, S. Weinkauf, and U. Stimming, “Influence of Particle Agglomeration on the Catalytic Activity of Carbon-Supported Pt Nanoparticles in CO Monolayer Oxidation,” Phys. Chem. Chem. Phys 7, 385–393 (2005).CrossRefGoogle Scholar
  20. 20.
    T. J. Schmidt and J. Baurmeister, “Properties of High-Temperature PEFC Celtec®-P 1000 MEAs in Start/Stop Operation Mode,” J. Power Sources 176(2), 428–434 (2008).CrossRefGoogle Scholar
  21. 21.
    K. C. Neyerlin, A. Singh, and D. Chu, “Kinetic Characterization of a Pt-Ni/C Catalyst with a Phosphoric Acid Doped PBI Membrane in a Proton Exchange Membrane Fuel Cell,” J. Power Sources 176(1), 112–117 (2008).CrossRefGoogle Scholar
  22. 22.
    M. Inaba, T. Kinumoto, M. Kiriake, R. Umebayashi, A. Tasaka, and Z. Ogumi, “Gas Crossover and Membrane Degradation in Polymer Electrolyte Fuel Cells,” Electrochim. Acta 51, 5746–5753 (2006).CrossRefGoogle Scholar
  23. 23.
    Z. Qi and S. Buelte, “Effect of Open Circuit Voltage on Performance and Degradation of High-Temperature PBI-H3PO4 Fuel Cells,” J. Power Sources 161 1126–1132 (2006).CrossRefGoogle Scholar
  24. 24.
    J. Zhang, Y. Tang, C. Song, and J. Zhang, “Polybenzimidazole-Membrane-Based PEM Fuel Cell in the Temperature Range of 120–200°C,” J. Power Sources 172 163–171 (2007).CrossRefGoogle Scholar
  25. 25.
    E. E. Said-Galiyev, A. Yu. Nikolaev, E. E. Levin, E. K. Lavrentyeva, M. O. Gallyamov, S. N. Polyakov, G. A. Tsirlina, O. A. Petrii, and A. R. Khokhlov, “Structural and Electrocatalytic Features of Pt/C Catalysts Fabricated in Supercritical Carbon Dioxide,” J. Solid State Electrochem. 15(3), 623–633 (2011).CrossRefGoogle Scholar
  26. 26.
    S. M. Haile, “Fuel Cell Materials and Components,” Acta Mater. 51, 5981–6000 (2003).CrossRefGoogle Scholar
  27. 27.
    J. Larminie and A. Dicks, Fuel Cell Systems Explained, 2nd ed. (Wiley, Chichester, 2003).Google Scholar
  28. 28.
    F. Jaouen and G. Lindbergh, “Transient Techniques for Investigating Mass-Transport Limitations in Gas Diffusion Electrodes: I. Modeling the PEFC Cathode,” J. Electrochem. Soc. 150(12), A1699–A1710 (2003).CrossRefGoogle Scholar
  29. 29.
    F. Jaouen, G. Lindbergh, and G. Sundholm, “Investigation of Mass-Transport Limitations in the Solid Polymer Fuel Cell Cathode: I. Mathematical Model,” J. Electrochem. Soc. 149(4), A437 (2002).CrossRefGoogle Scholar
  30. 30.
    R. Makharia, M. F. Mathias, and D. R. Baker, “Measurement of Catalyst Layer Electrolyte Resistance in PEFCs Using Electrochemical Impedance Spectroscopy,” J. Electrochem. Soc. 152(5), A970–A977 (2005).CrossRefGoogle Scholar
  31. 31.
    A. J. Appleby, “Oxygen Reduction on Oxide-Free Platinum in 85% Orthophosphoric Acid: Temperature and Impurity Dependence,” J. Electrochem. Soc. 177(3), 328–335 (1970).CrossRefGoogle Scholar
  32. 32.
    F. Jaouen, G. Lindbergh, and K. Wiezell, “Transient Techniques for Investigating Mass-Transport Limitations in Gas Diffusion Electrodes: II. Experimental Characterization of the PEFC Cathode,” J. Electrochem. Soc. 150(12), A1711–A1717 (2003).CrossRefGoogle Scholar
  33. 33.
    E. Springer, A. Zawodzinski, M. S. Wilson, and S. Golfesfeld, “Characterization of Polymer Electrolyte Fuel Cells Using AC Impedance Spectroscopy,” J. Electrochem. Soc. 143(2), 587–599 (1996).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • T. E. Grigor’ev
    • 1
  • E. E. Said-Galiev
    • 1
  • A. Yu. Nikolaev
    • 1
  • M. S. Kondratenko
    • 2
  • I. V. Elmanovich
    • 2
  • M. O. Gallyamov
    • 1
    • 2
  • A. R. Khokhlov
    • 1
    • 2
  1. 1.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia
  2. 2.Faculty of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations