Nanotechnologies in Russia

, Volume 5, Issue 7–8, pp 531–537 | Cite as

Hybrid systems of quantum dots mixed with the photosensitive protein phycoerythrin

  • E. G. MaksimovEmail author
  • T. S. Gostev
  • F. I. Kuz’minov
  • N. N. Sluchanko
  • I. N. Stadnichuk
  • V. Z. Pashchenko
  • A. B. Rubin


It is shown that semiconductor nanocrystals (or quantum dots) can be used to increase the absorbability of a pigment protein. In the mixture of phycoerythrin with quantum dots, the fluorescence of the quantum dots is suppressed several times due to the transfer of absorbed energy to phycoerythrin. The Forster resonance energy transfer is discussed as a possible mechanism of energy transfer in quantum dot-phycoerythrin donor-acceptor pairs. Calculations based on experimental data show that the efficiency of energy migration from quantum dots to phycoerythrin is 88% and the corresponding rate constant is 1.17 × 109 s−1.


Fluorescence Quantum Yield Ultra Violet Energy Migration Fluorescence Excitation Spectrum Hybrid Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Andersson and S. Styring, “Photosystem: II. Molecular Organization, Function, and Acclimation,” Curr. Top. Bioenerg. 16, 1–81 (1991).Google Scholar
  2. 2.
    A. A. Kononenko and E. P. Lukashev, “Light Biosensors Based on Bacteriorhodopsin and Photosynthetic Reaction Centers,” Adv. Biosens. 3, 191–211 (1995).Google Scholar
  3. 3.
    Artificial Photosynthesis: From Basic Biology to Industrial Application, Ed. by A. Collins and C. Critchley (Wiley, Weinheim, Germany, 2005).Google Scholar
  4. 4.
    A. Sukhanova, A. V. Baranov, D. Klinov, V. Oleinikov, K. Berwick, J. H. M. Cohen, M. Pluot, and I. Nabiev, “Self-Assembly of Charged Microclusters of CdSe/ZnS Core/Shell Nanodots and Nanorods into Hierarchically Ordered Colloidal Arrays,” Nanotechnology 17(16), 4223–4228 (2006).CrossRefADSGoogle Scholar
  5. 5.
    A. Sukhanova, M. Artemyev, O. Sharapov, A. Baranov, J. C. Jardillier, and I. Nabiev, “Ultrasensitive Non-Isotopic Water-Soluble Nanocrystals,” European, Eurasian, and United States Patents Nos. EP1 366 347; US2004 105 973; and WO02 073 155 (March 9, 2001).Google Scholar
  6. 6.
    V. A. Oleinikov, A. V. Sukhanova, and I. R. Nabiev, “Fluorescent Semiconductor Nanocrystals in Biology and Medicine,” Ross. Nanotekhnol. 2(1–2), 160–173 (2007).Google Scholar
  7. 7.
    I. L. Medintz and H. Mattoussi, “Quantum Dot-Based Resonance Energy Transfer and Its Growing Application in Biology,” Phys. Chem. Chem. Phys. 11, 17–45 (2009).CrossRefPubMedGoogle Scholar
  8. 8.
    I. N. Stadnichuk, “Phycobiliproteins,” Itogi Nauki Tekh., Ser.: Biol. Khim. 40, 1–194 (1990).Google Scholar
  9. 9.
    Photosynthesis, Ed. by Govindjee (Academic, New York, 1982; Mir, Moscow, 1987), Vol. 1.Google Scholar
  10. 10.
    R. Rippka, J. Waterbury, and G. Cohen-Bazire, “A Cyanobacterium Which Lacks Thylakoids,” Arch. Microbiol. 100, 419–436 (1974).CrossRefGoogle Scholar
  11. 11.
    G. Guglielmi, G. Cohen-Bazire and D. A. Bryant, “The Structure of Gloeobacter Violaceus and Its Phycobilisomes,” Arch. Microbiol. 129, 181–189 (1981).CrossRefGoogle Scholar
  12. 12.
    U. K. Laemmli, “Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4,” Nature (London) 227, 680–685 (1970).CrossRefADSGoogle Scholar
  13. 13.
    Y. E. Borissevitch and M. Tabak, “Correction of Stern-Volmer Fluorescence Quenching Constants at Very Low Optical Absorption of the Quencher,” in V Encuentro Latinoamericano de Fotoquímica y Fotobiologia (V ELAFOT), Los Cocos, Co’rdoba, Argentina, 14 al 18 de Septiembre de 1997 (Los Cocos, 1997).Google Scholar
  14. 14.
    J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd ed. (Kluwer Academic, New York, United States 1999).Google Scholar
  15. 15.
    S. V. Gaponenko, Optical Properties of Semiconductor Nanocrystals (Cambridge University Press, Cambridge, 1997).Google Scholar
  16. 16.
    B. N. Korvatovskii, V. Z. Pashchenko, A. B. Rubin, L. B. Rubin, and V. B. Tusov, “Automated Pulsed Fluorometer with High Time Resolution and Sensitivity,” Biol. Nauki 11, 105 (1982).PubMedGoogle Scholar
  17. 17.
    R. E. Dale and J. Eisinger, “Intramolecular Distances Determined by Energy Transfer. Dependence on Orientational Freedom of Donor and Acceptor,” Biopolymers 13, 1573–1605 (1974).CrossRefGoogle Scholar
  18. 18.
    E. N. Eremin, Principles of Chemical Kinetics, 2nd ed. (Vysshaya Shkola, Moscow, 1976) [in Russian].Google Scholar
  19. 19.
    V. Z. Paschenko, R. P. Evstigneeva, V. V. Gorokhov, V. N. Luzgina, V. B. Tusov, and A. B. Rubin, “Photophysical Properties of Carborane-Containing Derivatives of 5,10,15,20-tetra(p-Aminophenyl) Porphyrin,” J. Photochem. Photobiol. 54, 162–167 (2000).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • E. G. Maksimov
    • 1
    Email author
  • T. S. Gostev
    • 2
  • F. I. Kuz’minov
    • 2
  • N. N. Sluchanko
    • 3
  • I. N. Stadnichuk
    • 4
  • V. Z. Pashchenko
    • 1
  • A. B. Rubin
    • 1
  1. 1.Faculty of Biology, Biophysics DepartmentMoscow State UniversityMoscowRussia
  2. 2.Faculty of Physics, Quantum Electronics DepartmentMoscow State UniversityMoscowRussia
  3. 3.Faculty of Biology, Biochemistry DepartmentMoscow State UniversityMoscowRussia
  4. 4.Bach Institute of BiochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations