Nanotechnologies in Russia

, Volume 4, Issue 11–12, pp 806–815 | Cite as

Carbon nanocontainers for gas storage



Various types of nanocontainers that can work if there is a change of thermodynamic conditions or a change in the external electrostatic field are presented. Using the molecular dynamics method, the processes of charging, storage, and discharging various nanocontainers with hydrogen and methane are investigated.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Z. J. Li, G. H. Wen, F. W. Wang, J. L. Yu, X. L. Dong, X. X. Zhang, and Z. D. Zhang, “Magnetic Properties of Ni Nanoparticles and Ni(C) Nanocapsules,” J. Mater. Sci. Technol. 17(2), 99–100 (2002).Google Scholar
  2. 2.
    N. S. Kopelev, V. Chechersky, and A. Nath, “Encapsulation of Iron Carbide in Carbon Nanocapsules,” Chem. Mater. 7, 1419–1421 (1995).CrossRefGoogle Scholar
  3. 3.
    A. Muller and M. Henry, “Nanocapsule Water-Based Chemistry,” C. R. Chim. 6, 1201–1208 (2003).Google Scholar
  4. 4.
    J. W. Kang and H. J. Hwang, “Nano-Memory-Element Applications of Carbon Nanocapsule Encapsulating Potassium Ions: Molecular Dynamics Study,” J. Korean Phys. Soc. 44(4), 879–883 (2004).Google Scholar
  5. 5.
    H. Kitahara and T. Oku, “Nanostructures and Electronic Properties of Carbon and Boron Nitride Nanocapsules,” J. Ceram. Process. Res. 5(1), 89–93 (2004).Google Scholar
  6. 6.
    T. Y. Liu, K. H. Liu, D. M. Liu, S. Y. Chen, and I. W. Chen, “Temperature-Sensitive Nanocapsules for Controlled Drug Release Caused by Magnetically Triggered Structural Disruption,” Adv. Funct. Mater. 18, 1–8 (2008).Google Scholar
  7. 7.
    D. W. Kuykendall and S. C. Zimmerman, “A Very Versatile Nanocapsules,” Nat. Nanotechnol. 2, 201–202 (2007).CrossRefPubMedADSGoogle Scholar
  8. 8.
    K. V. Shaitan, Y. V. Tourleigh, D. N. Golik, and M. P. Kirpichnikov, “Computer-Aided Molecular Design of Nanocontainers for Inclusion and Targeted Delivery of Bioactive Compounds,” J. Drug Delivery Sci. Technol. 16(4), 253–258 (2006).Google Scholar
  9. 9.
    Y. X. Ren, T. Y. Ng, and K. M. Liew, “State of Hydrogen Molecules Confined in C60 Fullerene and Carbon Nanocapsule Structures,” Carbon 44, 397–406 (2006).CrossRefGoogle Scholar
  10. 10.
    X. Ye, X. Gu, X. G. Gong, T. K. M. Shing, and Z.-F. Liu, “A Nanocontainer for the Storage of Hydrogen,” Carbon 45, 315–320 (2007).CrossRefGoogle Scholar
  11. 11.
    R. E. Barajas-Barraza and R. A. Guirado-Lopez, “Clustering of H2 Molecules Encapsulated in Fullerene Structures,” Phys. Rev. B: Condens. Matter 66, 155 426 (2002).Google Scholar
  12. 12.
    T. Oku, M. Kuno, and I. Narita, “Hydrogen Storage in Boron Nitride Nanomaterials Studied by TG/DTA and Cluster Calculation,” J. Phys. Chem. Solids 65(2–3), 549–552 (2004).CrossRefADSGoogle Scholar
  13. 13.
    T. Oku and M. Kuno, “Synthesis, Argon/Hydrogen Storage, and Magnetic Properties of Boron Nitride Nanotubes and Nanocapsules,” Diamond Relat. Mater. 12(3–7), 840–845 (2003).CrossRefGoogle Scholar
  14. 14.
    A. V. Vakhrushev, A. M. Lipanov, and M. V. Suetin, Simulation of the Processes of Accumulation of Hydrogen and Hydrocarbons by Nanostructures (Institute of Computer Science, Scientific and Publishing Center “Regular and Chaotic Dynamics,” Izhevsk, 2008), p. 120 [in Russian].Google Scholar
  15. 15.
    A. V. Vakhrushev, A. M. Lipanov, and M. V. Suetin, “Simulation of the Processes of Hydrogen Adsorption on Fullerenes and in Carbon Clusters,” Tyazh. Mashinostr., No. 9, 20–22 (2007).Google Scholar
  16. 16.
    A. V. Vakhrushev, A. M. Lipanov, and M. V. Suetin, “Simulation of the Processes of Hydrogen Adsorption by Nanostructures,” Al’ternativ. Energ. Ekol., No. 1, 13–20 (2007).Google Scholar
  17. 17.
    A. V. Vakhrushev and M. V. Suetin, “Storage of Methane in Nanocapsules,” Al’ternativ. Energ. Ekol. 64(8), 93–98 (2008).Google Scholar
  18. 18.
    M. V. Suyetin and A. V. Vakhruchev, “Molecular Dynamics Simulation of Methane Storage in Nanocapsules,” in Abstracts of Papers of the 11th Annual NSTI Nanotechnology Conference and Trade Show (Nanotech 2008), Nano Science and Technology Institute (NSTI), Hynes Convention Center, Boston, MA, United States, June 1–5, 2008 (Boston, 2008), p. 26.Google Scholar
  19. 19.
    A. V. Vakhrushev and M. V. Suetin, “Molecular Dynamics Simulation of Adsorption, Storage, and Desorption of Methane by Controlled Nanocapsules,” in Proceedings of the First Nanotechnology International Forum (RusNanoTech 2008), The Russian Corporation of Nanotechnologies, Moscow, Russia, December 3–5, 2008 (Moscow, 2008), pp. 282–284.Google Scholar
  20. 20.
    B. W. Smith and D. E. Luzzi, “Carbon Nanotube Encapsulated Fullerenes: A Unique Class of Hybrid Materials,” Chem. Phys. Lett. 321, 169–174 (2000).CrossRefADSGoogle Scholar
  21. 21.
    M. Yoon, S. Berber, and D. Tomanek, “Energetics and Packing of Fullerenes in Nanotube Peapods,” Phys. Rev. B: Condens. Matter 71, 155 406-1–155 406-4 (4 pages) (2005).Google Scholar
  22. 22.
    D. Tomanek, R. Enbody, K. Young-Kyun, and M. W. Brehob, “Nanocapsules Containing Charged Particles, Their Uses, and Methods of Forming Same,” US Patent No. 6,473,351 (2002).Google Scholar
  23. 23.
    J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kalé, and K. Schulten, “Scalable Molecular Dynamics with NAMD,” J. Comput. Chem. 26, 1781–1802 (2005).CrossRefPubMedGoogle Scholar
  24. 24.
    W. Humphrey, A. Dalke, and K. Schulten, “VMDVisual Molecular Dynamics,” J. Mol. Graphics 14(1), 33–38 (1996).CrossRefGoogle Scholar
  25. 25.
    A. D. Becke, “A New Mixing of Hartree-Fock and Local Density Functional Theories,” J. Chem. Phys. 98(2), 1372–1377 (1993).CrossRefADSGoogle Scholar
  26. 26.
    A. D. Becke, “Density-Functional Thermochemistry: I. The Effect of the Exchange-Only Gradient Correction,” J. Chem. Phys. 96(3), 2155–2160 (1992).CrossRefADSGoogle Scholar
  27. 27.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M.W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian 98: Program for Quantum-Chemical Calculations (Revision A.1), (Gaussian, Pittsburgh, PA, United States, 1998).Google Scholar
  28. 28.
    F. Banhart, J. X. Li, and A. V. Krasheninnikov, “Carbon Nanotubes under Electron Irradiation: Stability of the Tubes and Their Action as a Pipe for Atom Transport,” Phys. Rev. B: Condens. Matter 71(24), 241 408-1–241 408-4 (4 pages).Google Scholar
  29. 29.
    F. Banhart, “Irradiation of Carbon Nanotubes with Focused Electron Beam in the Electron Microscope,” J. Mater. Sci. 41, 4505–4511 (2006).CrossRefADSGoogle Scholar
  30. 30.
    A. V. Krasheninnikov and F. Banhart, “Engineering of Nanostructured Carbon Materials with Electron or Ion Beams,” Nat. Mater. 9, 723–733 (2007).CrossRefADSGoogle Scholar
  31. 31.
    V. V. Simonyan, P. Diep, and J. K. Johnson, “Molecular Simulation of Hydrogen Adsorption in Charged Single-Walled Carbon Nanotubes,” J. Chem. Phys. 111, 9778–9783 (1999).CrossRefADSGoogle Scholar
  32. 32.
    A. J. Lachawiec, Jr., G. Qi, and R. T. Yang, “Hydrogen Storage in Nanostructured Carbons by Spillover: Bridge-Building Enhancement,” Langmuir 21, 11 418–11 424 (2005).CrossRefGoogle Scholar
  33. 33.
    F. H. Yang, A. J. Lachawiec, Jr., and R. T. Yang, “Adsorption of Spillover Hydrogen Atoms on Single-Walled Carbon Nanotubes,” J. Phys. Chem. B 110, 6236–6234 (2006).CrossRefPubMedGoogle Scholar
  34. 34.
    S. S. Han and H. M. Lee, “Adsorption Properties of Hydrogen on (10.0) Single-Walled Carbon Nanotube through Density Functional Theory,” Carbon, 42, 2169–2177 (2004).CrossRefGoogle Scholar
  35. 35.
    Q. Wang and K. Johnson, “Molecular Simulation of Hydrogen Adsorption in Single-Walled Carbon Nanotubes and Idealized Carbon Slit Pores,” J. Chem. Phys. 110(11), 577–586 (1999).CrossRefADSGoogle Scholar
  36. 36.
    Q. Wang and K. Johnson, “Optimization of Carbon Nanotube Arrays for Hydrogen Adsorption,” J. Phys. Chem. B 103, 4809–4813 (1999).CrossRefGoogle Scholar
  37. 37.
    J.-W. Lee, H.-C. Kang, W.-G. Shim, C. Kim, and H. Moon, “Methane Adsorption on Multi-Walled Carbon Nanotube at (303.15, 313.15, and 323.15) K,” Chem. Eng. Data 51, 963–967 (2006).CrossRefGoogle Scholar
  38. 38.
    X. Zhang and W. Wang, “Adsorption of Linear Ethane Molecules in Single-Walled Carbon Nanotube Arrays by Molecular Simulation,” Phys. Chem. Chem. Phys. 4, 3048–3054 (2002).CrossRefGoogle Scholar
  39. 39.
    F. Beuneu, C. I’Huillier, J.-P. Salvetat, J.-M. Bonard, and L. Forr“Modification of Multiwalled Carbon Nanotubes by Electron Irradiation: An ESR Study,” Phys. Rev. B: Condens. Matter 59, 5945–5949 (1999).ADSGoogle Scholar
  40. 40.
    F. Banhart, “Irradiation Effects in Carbon Nanostructures,” Rep. Prog. Phys. 62, 1181–1221 (1999).CrossRefADSGoogle Scholar
  41. 41.
    P. M. Ajayan, V. Ravikumar, and J. C. Charlier, “Surface Reconstructions and Dimensional Changes in Single-Walled Carbon Nanotubes,” Phys. Rev. Lett. 81, 1437 (1998).CrossRefADSGoogle Scholar
  42. 42.
    A. Kis, G. Csanyi, J.-P. Salvetat, T.-N. Lee, E. Couteau, A. J. Kulik, W. Benoit, J. Brugger, and L. Forró, “Interlayer Forces and Ultralow Sliding Friction in Multiwalled Carbon Nanotubes,” Nat. Mater. 3, 153 (2004).CrossRefPubMedADSGoogle Scholar
  43. 43.
    A. Zobelli, A. Gloter, C. P. Ewels, and C. Colliex, “Shaping Single-Walled Nanotubes with an Electron Beam,” Phys. Rev. B: Condens. Matter 77, 045 410 (2008).Google Scholar
  44. 44.
    M. Hulman, V. Skakalova, S. Roth, and H. Kuzmany, “Shaping Single-Walled Nanotubes with an Electron Beam,” J. Appl. Phys. 98, 024 311 (2005).CrossRefGoogle Scholar
  45. 45.
    V. Skakalova, U. Dettlaff-Weglikowska, and S. Roth, “Gamma-Irradiated and Functionalized Single-Walled Nanotubes,” Diamond Relat. Mater. 13, 296 (2004).CrossRefGoogle Scholar
  46. 46.
    V. Basiuk, K. Kobayashi, T. Kaneko, Y. Negishi, E. Basiuk, and J. Saniger-Blesa, “Proton Irradiation of Carbon Nanotubes,” Nano Lett. 2, 789 (2002).CrossRefADSGoogle Scholar
  47. 47.
    Y. J. Jung, Y. Homma, R. Vajtai, Y. Kobayashi, T. Ogino, and P. M. Ajayan, “Straightening Suspended Single-Walled Carbon Nanotubes by Ion Irradiation,” Nano Lett. 6, 1109–1113 (2004).CrossRefADSGoogle Scholar
  48. 48.
    S. Talapatra, P. G. Ganesan, T. Kim, R. Vajtai, M. Huang, M. Shima, G. Ramanath, D. Srivastava, S. C. Deevi, and P. M. Ajayan, “Irradiation-Induced Magnetism in Carbon Nanostructures,” Phys. Rev. Lett. 95, 097 201 (2005).CrossRefGoogle Scholar
  49. 49.
    A. Züttel, Ch. Nützenadel, P. Sudan, Ph. Mauron, Ch. Emmenegger, S. Rentsch, L. Schlapbach, A. Weidenkaff, and T. Kiyobayashi, “Hydrogen Sorption by Carbon Nanotubes and Other Carbon Nanostructures,” J. Alloys Compd. 330–332, 676–682 (2002).CrossRefGoogle Scholar
  50. 50.
    A. Ansón, M. Benham, J. Jagiello, M. A. Callejas, A. M. Benito, W. K. Maser, A. Züttel, P. Sudan, and M. T. Martáinez, “Hydrogen Adsorption on a Single-Walled Carbon Nanotube Material: A Comparative Study of Three Different Adsorption Techniques,” Nanotechnology 15, 1503–1508 (2004).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Institute of Applied Mechanics, Ural BranchRussian Academy of SciencesIzhevskRussia

Personalised recommendations