Nanotechnologies in Russia

, Volume 4, Issue 1–2, pp 55–59 | Cite as

Electrophoresis in the tasks of purifying, separating, and integrating carbon nanotubes

Experiment

Abstract

The application of electrophoresis in the tasks of purifying, separating and integrating carbon nanotubes is considered. The results of using electrophoresis in the development of functional devices for electronics and sensor techniques are described.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature (London) 354, 56–58 (1991).CrossRefADSGoogle Scholar
  2. 2.
    S. J. Tans, A. R. M. Verschueren, and C. Dekker, “Room-Temperature Transistor Based on a Single Carbon Nanotube,” Nature (London) 393, 49–51 (1998).CrossRefGoogle Scholar
  3. 3.
    J. Kong, N. R. Franklin, Ch. Zhou, M. G. Chapline, Sh. Peng, K. Cho, and H. Dai, “Nanotube Molecular Wires as Chemical Sensors,” Science (Washington) 287, 622–625 (2000).CrossRefADSGoogle Scholar
  4. 4.
    P. J. F. Harris, “Carbon Nanotubes and Related Structures: New Materials for the Twenty-First Century,” (Cambridge University Press, Cambridge, 2002; Tekhnosfera, Moscow, 2003).Google Scholar
  5. 5.
    H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, and R. E. Smalley, “Nanotubes as Nanoprobes in Scanning Probe Microscopy,” Nature (London) 384(6605), 147–150 (1996).CrossRefADSGoogle Scholar
  6. 6.
    I. I. Bobrinetskii, V. K. Nevolin, A. A. Stroganov, and Yu. A. Chaplygin, “Controlling Electrical Transport through Bundles of Single-Wall Carbon Nanotubes,” Mikroelektronika 33(5), 356–361 (2004) [Russ. Microelectron. 33 (5), 292–297 (2004)].Google Scholar
  7. 7.
    I. I. Bobrinetskii, “Sensor Properties of Structures Based on Carbon Nanotubes,” Ross. Nanotekhnol. 2(5–6), 90–94 (2007).Google Scholar
  8. 8.
    A. I. Aksenov, I. I. Bobrinetskii, V. K. Nevolin, and M. M. Simunin, “Temperature Dependence of the Electrical Conductivity of Structures Based on Carbon Nanotubes under Atmospheric Conditions,” Datchiki Sist., No. 9, 60–64 (2006).Google Scholar
  9. 9.
    I. I. Bobrinetskii, A. A. Stroganov, V. K. Nevolin, O. M. Ivanova, and S. A. Krutovertsev “The Influence of Variations in the Relative Humidity of the Surrounding Medium on the Transport Properties of Structures Based on Carbon Nanotubes,” Mikro-Nanosist. Tekh., No. 10, 23–26 (2007).Google Scholar
  10. 10.
    S. S. Dukhin and B. V. Deryagin, Electrophoresis (Nauka, Moscow, 1976) [in Russian].Google Scholar
  11. 11.
    B. R. Glick and J. J. Pasternak, Molecular Biotechnology: Principles and Applications of Recombinant DNA (The American Society for Microbiology, Washington, 1998; Mir, Moscow, 2002).Google Scholar
  12. 12.
    S. Banerjee, B. E. White, L. Huang, B. J. Rego, S. O’Brien, and I. P. Herman, “Precise Positioning of Single-Walled Carbon Nanotubes by AC Dielectrophoresis,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.—Process., Meas., Phenom. 24(6), 3173–3178 (2006).CrossRefADSGoogle Scholar
  13. 13.
    K. Yamamoto, S. Akita, and Y. Nakayama, “Orientation and Purification of Carbon Nanotubes Using AC Electrophoresis,” J. Phys. D: Appl. Phys. 31, L34–L36 (1998).CrossRefGoogle Scholar
  14. 14.
    P. Makaram, S. Selvarasah, X. Xiong, C.-L. Chen, A. Busnaina, N. Khanduja, and M. R. Dokmeci, “Three-Dimensional Assembly of Single-Walled Carbon Nanotubes Interconnects Using Dielectrophoresis,” Nanotechnology 18, 395 204–395 208 (2007).CrossRefGoogle Scholar
  15. 15.
    A. H. Monica, S. J. Papadakis, R. Osiander, and M. Paranjape, “Wafer-Level Assembly of Carbon Nanotube Networks Using Dielectrophoresis,” Nanotechnology 19, 085 303–085 307 (2008).CrossRefGoogle Scholar
  16. 16.
    A. Vijayaraghavan, S. Blatt, D. Weissenberger, M. Oron-Carl, F. Hennrich, D. Gerthsen, H. Hahn, and R. Krupke, “Ultra-Large-Scale Directed Assembly of Single-Walled Carbon Nanotube Devices,” Nano Lett 7(6), 1556–1560 (2007).PubMedCrossRefGoogle Scholar
  17. 17.
    I. I. Bobrinetskii, V. N. Kukin, V. K. Nevolin, and M. M. Simunin, “Investigation of a Carbon Nanomaterial Using Atomic-Force and Electron Microscopies,” Izv. Vyssh. Uchebn. Zaved., Elektron., No. 4, 3–6 (2007).Google Scholar
  18. 18.
    I. I. Bobrinetskii, V. K. Nevolin, and M. M. Simunin, “Technology for Production of Carbon Nanotubes Using the Method of Catalytic Pyrolysis of Ethanol from the Gaseous Phase,” Khim. Tekhnol. 8(2), 58–62 (2007).Google Scholar
  19. 19.
    H. C. Shim, H. W. Lee, S. Yeom, Y. K. Kwak, S. S. Lee, and S. H. Kim, “Purification of Carbon Nanotubes through an Electric Field near the Arranged Microelectrodes,” Nanotechnology 18, 115 602–115 607 (2007).Google Scholar
  20. 20.
    H. Peng, N. T. Alvarez, C. Kittrell, R. H. Hauge, and H. K. Schmidt, “Dielectrophoresis Field Flow Fractionation of Single-Walled Carbon Nanotubes,” J. Am. Chem. Soc. 128, 8396–8397 (2006).PubMedCrossRefGoogle Scholar
  21. 21.
    S. K. Doorn, M. S. Strano, M. J. O’Connell, E. H. Haroz, K. L. Rialon, R. H. Hauge, and R. E. Smalley, “Capillary Electrophoresis Separations of Bundled and Individual Carbon Nanotubes,” J. Phys. Chem. B 107, 6063–6069 (2003).CrossRefGoogle Scholar
  22. 22.
    R. Krupke, F. Hennrich, H. Lohneysen, and M. M. Kappes, “Separation of Metallic from Semiconducting Single-Walled Carbon Nanotubes,” Science (Washington) 301, 344–347 (2003).CrossRefADSGoogle Scholar
  23. 23.
    M. Dimaki and P. Boggild, “Dielectrophoresis of Carbon Nanotubes Using Microelectrodes: A Numerical Study,” Nanotechnology 15, 1–8 (2004).CrossRefGoogle Scholar
  24. 24.
    T. Tanaka, H. Jin, Y. Miyata, and H. Kataura, “High-Yield Separation of Metallic and Semiconducting SWCNTs by Gel Electrophoresis,” in Book of Abstract of the Ninth International Conference on the Science and Application of Nanotubes, Le Corum, Montpellier, France, 2008 (Montpellier, 2008), p. 498.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Moscow Institute of Electronic Technology (State University) (MIET)MoscowRussia

Personalised recommendations