Advertisement

Nanotechnologies in Russia

, Volume 3, Issue 7–8, pp 408–431 | Cite as

Design of styryl dye single crystals in the presence of low-molecular aromatic compounds and peculiarities of [2+2]-photocycloaddition in these single crystals

  • L. G. Kuz’mina
  • A. I. Vedernikov
  • J. A. K. Howard
  • M. V. Alfimov
  • S. P. Gromov
Self-Organized Structures and Nano-Assemblies

Abstract

A variety of crystal packing motifs for styryl dye Et-Py+-CH=CH-C6H4OMe ClO 4 crystallized from solvent mixtures containing different low-molecular aromatic compounds was investigated by X-ray diffraction method. The presence of some of these aromatic compounds was found to affect the mode of the aggregation of the dye structural units in the course of crystal nucleation, regardless of whether these compounds are involved in the growing crystal. The aromatic molecules containing two proton-donating groups can be involved in the crystal packing of the dye as a solvate that forms weak hydrogen bonds with perchlorate anions or other solvate molecules. The aromatic molecules without functional groups (except for benzene) are not involved in the growing crystal as additional building blocks. The syn-head-to-tail stacking with contiguous and antiparallel arrangement of the ethylene bonds is the main packing motif of dye cations in crystals of unsolvated and solvated forms. This is favorable for accomplishing the [2+2]-photocycloaddition (PCA) reaction resulting in the centrosymmetric rctt-isomer of a cyclobutane derivative. In the solvated forms of the crystals, the solvate molecules and perchlorate anions form loose layers between the cation stacks. These layers are capable of leveling internal stresses caused by the PCA reaction, thus promoting this reaction as a single-crystal-to-single-crystal transformation. Other conditions for the PCA reaction to proceed without single crystal degradation are (1) retention of the initial crystal symmetry in the course of the PCA and (2) stack separation into dimeric pairs with d 1 < 4.2 Å < d 2, where d 1 and d 2 are the distances between the ethylene bonds within the dimeric pairs and between them, respectively. The regularities found for the crystal packing and the PCA reaction in styryl dye single crystals may be used to design information recording and storage cells.

Keywords

Solvate Molecule Crystal Packing Ethylene Fragment Occupancy Ratio Molecular Cation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. D. Cohen and G. M. Schmidt, J. Chem. Soc., p. 1996 (1964).Google Scholar
  2. 2.
    M. D. Cohen, G. M. Schmidt, and F. I. Sonntag, J. Chem. Soc., p. 2000 (1964).Google Scholar
  3. 3.
    G. M. Schmidt, J. Chem. Soc., p. 2014 (1964).Google Scholar
  4. 4.
    G. M. Schmidt, Pure Appl. Chem. 27, 647 (1971).Google Scholar
  5. 5.
    V. Ramamurthy and K. Venkatesan, Chem. Rev. 87, 433 (1987).CrossRefGoogle Scholar
  6. 6.
    J. H. Kim, Y. Tani, M. Matsuoka, and K. Fukunishi, Dyes Pigm. 43, 7 (1999).CrossRefGoogle Scholar
  7. 7.
    K. S. S. P. Rao, S. M. Hubig, J. N. Moorthy, and J. K. Kochi, J. Org. Chem. 64, 8098 (1999).CrossRefGoogle Scholar
  8. 8.
    W.-Q. Zhang, J.-P. Zhuang, C.-B. Li, et al., Chin. J. Chem. 19, 695 (2001).Google Scholar
  9. 9.
    T. D. Hamilton, G. S. Papaefstathiou, and L. R. MacGillivray, J. Am. Chem. Soc. 124, 11 606 (2002).Google Scholar
  10. 10.
    D. B. Varshney, G. S. Papaefstathiou, and L. R. MacGillivray, Chem. Commun. (Cambridge), No. 17, 1964 (2002).Google Scholar
  11. 11.
    L. R. MacGillivray, CrystEngComm 4, 37 (2002).CrossRefGoogle Scholar
  12. 12.
    V. Darcos, K. Griffith, X. Sallenave, et al., Photochem. Photobiol. Sci. 2, 1152 (2003).CrossRefGoogle Scholar
  13. 13.
    D. G. Amirsakis, A. M. Elizarov, M. A. Garcia-Garibay, et al., Angew. Chem., Int. Ed. 42, 1126 (2003).CrossRefGoogle Scholar
  14. 14.
    J. Hockemeyer, J. C. Burbiel, and C. E. Müller, J. Org. Chem. 69, 3308 (2004).CrossRefGoogle Scholar
  15. 15.
    T. Caronna, R. Liantonio, T. A. Logothetis, et al., J. Am. Chem. Soc. 126, 4500 (2004).CrossRefGoogle Scholar
  16. 16.
    M. Lehmann, I. Fischbach, H. W. Spiess, and H. Meier, J. Am. Chem. Soc. 126, 772 (2004).CrossRefGoogle Scholar
  17. 17.
    H. Maeda, K. Nishimura, K. Mizuno, et al., J. Org. Chem. 70, 9693 (2005).CrossRefGoogle Scholar
  18. 18.
    F. H. Allen, M. F. Mahon, P. R. Raithby, et al., New J. Chem. 29, 182 (2005).CrossRefGoogle Scholar
  19. 19.
    M. B. Hursthouse and M. Motevalli, J. Phys. Chem. 85, 3636 (1981).CrossRefGoogle Scholar
  20. 20.
    Y. Ohashi, Acta Crystallogr., Sect. A: Found. Crystallogr. 54, 842 (1998).CrossRefGoogle Scholar
  21. 21.
    K. Honda, F. Nakanishi, and N. Feeder, J. Am. Chem. Soc. 121, 8246 (1999).CrossRefGoogle Scholar
  22. 22.
    H. Hosomi, S. Ohba, K. Tanaka, and F. Toda, J. Am. Chem. Soc. 122, 1818 (2000).CrossRefGoogle Scholar
  23. 23.
    I. Turowska-Tyrk, Chem. Eur. J. 7, 3401 (2001).CrossRefGoogle Scholar
  24. 24.
    I. Turowska-Tyrk, Chem. Phys. Lett. 361, 115 (2002).CrossRefGoogle Scholar
  25. 25.
    I. Turowska-Tyrk, J. Phys. Org. Chem. 17, 837 (2004).CrossRefGoogle Scholar
  26. 26.
    H. Nalanishi, W. Jones, J. M. Thomas, and K. Honda, Bull. Chem. Soc. Jpn. 75, 2383 (2002).CrossRefGoogle Scholar
  27. 27.
    S. Ohba and I. Yoshikatsu, Acta Crystallogr., Sect. B: Struct. Sci. 59, 149 (2003).CrossRefGoogle Scholar
  28. 28.
    M. V. Alfimov, S. P. Gromov, O. B. Stanislavskii, et al., Izv. Akad. Nauk, Ser. Khim., No. 8, 1449 (1993).Google Scholar
  29. 29.
    S. P. Gromov and M. V. Alfimov, Izv. Akad. Nauk, Ser. Khim., No. 4, 641 (1997).Google Scholar
  30. 30.
    S. P. Gromov, E. N. Ushakov, O. A. Fedorova, et al., J. Org. Chem. 68, 6115 (2003).CrossRefGoogle Scholar
  31. 31.
    A. I. Vedernikov, N. A. Lobova, E. N. Ushakov, et al., Mendeleev Commun. 15, 173 (2005).CrossRefGoogle Scholar
  32. 32.
    S. Yu. Zaitsev, T. I. Sergeeva, E. A. Baryshikova, et al., Colloids Surf., A 198–200, 473 (2002).CrossRefGoogle Scholar
  33. 33.
    O. A. Fedorova, Yu. V. Fedorov, A. I. Vedernikov, et al., J. Phys. Chem. A 106, 6213 (2002).CrossRefGoogle Scholar
  34. 34.
    S. P. Gromov, A. I. Vedernikov, N. A. Lobova, et al., RF Patent No. 2 278 134, Byull. Izobret., No. 17 (2006).Google Scholar
  35. 35.
    S. P. Gromov, O. A. Fedorova, E. N. Ushakov, et al., J. Chem. Soc., Perkin Trans. 2, No. 7, 1323 (1999).Google Scholar
  36. 36.
    S. P. Gromov, A. I. Vedernikov, Yu. V. Fedorov, et al., Izv. Akad. Nauk, Ser. Khim., No. 7, 1524 (2005).Google Scholar
  37. 37.
    O. A. Fedorova, Yu. V. Fedorov, E. N. Andryukhina, et al., Org. Lett. 5, 4533 (2003).CrossRefGoogle Scholar
  38. 38.
    S. P. Gromov, Ross. Nanotekhnol. 1(1–2), 29 (2006).Google Scholar
  39. 39.
    A. I. Vedernikov, S. P. Gromov, N. A. Lobova, et al., Izv. Akad. Nauk, Ser. Khim., No. 8, 1896 (2005).Google Scholar
  40. 40.
    L. G. Kuz’mina, A. I. Vedernikov, N. A. Lobova, et al., New J. Chem. 31, 980 (2007).CrossRefGoogle Scholar
  41. 41.
    A. I. Vedernikov, L. G. Kuz’mina, S. K. Sazonov, et al., Izv. Akad. Nauk, Ser. Khim., No. 9, 1797 (2007).Google Scholar
  42. 42.
    L. G. Kuz’mina, A. I. Vedernikov, S. K. Sazonov, et al., Kristallografiya 53(3), 460 (2008) [Crystallogr. Rep. 53 (3), 428 (2008)].Google Scholar
  43. 43.
    L. G. Kuz’mina, A. V. Churakov, J. A. K. Howard, et al., Kristallografiya 48(4), 664 (2003) [Crystallogr. Rep. 48 (4), 613 (2003)].Google Scholar
  44. 44.
    J. Harada and K. Ogawa, J. Am. Chem. Soc. 126, 3539 (2004).CrossRefGoogle Scholar
  45. 45.
    S. K. Kearsley, in Studies in Organic Chemistry, Vol. 32: Organic Solid State Chemistry, Ed. by G. R. Desiraju (Elsevier, Amsterdam, 1987), p. 69.Google Scholar
  46. 46.
    SAINT: Integration Software for Single Crystal Data, Version 6.02a (Bruker AXS, Madison, WI, United States, 2001).Google Scholar
  47. 47.
    SHELXTL-Plus: A System of Computer Programs for the Determination of Crystal Structure from X-Ray Diffraction Data, Version 5.10 (Bruker AXS, Madison, WI, United States, 1997).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • L. G. Kuz’mina
    • 1
  • A. I. Vedernikov
    • 2
  • J. A. K. Howard
    • 3
  • M. V. Alfimov
    • 2
  • S. P. Gromov
    • 2
  1. 1.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Photochemistry CenterRussian Academy of SciencesMoscowRussia
  3. 3.Department of ChemistryUniversity of DurhamDurhamUK

Personalised recommendations