Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Chaperone-Like Protein a-Crystallin Brakes the Aggregation but Does Not Support Refolding of UV-Damaged βL-Crystallin

  • 7 Accesses

Abstract

The small heat shock protein α-crystallin is a main protein in the lens of the eye. It supports lens transparency by blocking the aggregation of damaged proteins in the cytoplasm of lens fiber cells. Using detergent-induced protein denaturation, it was shown that α-crystallin supports the refolding of denatured proteins. The aim of this paper was to study the ability of α-crystallin to restore the native structure of the physiologically relevant substrate of UV-damaged βL-crystallin. It was shown α-crystallin brakes the aggregation of UV-damaged βL-crystallin at conditions close to physiological (temperature, pH, solvent ionic strength). Full blocking of aggregation was obtained at a 5/1 ratio of α-crystallin and the target protein (mol/mol). DSC study has shown that denaturation temperatures of native, UV-damaged βL-crystallin and UV-damaged βL-crystallin incubated with α-crystallin for 24 h were not different and were equally of 64.0 ± 0.3°C. The total energy of the denaturation of stable water-soluble forms of UVβL-crystallin did not differ from the denaturation energy of UVβL-crystallin incubated with α-crystallin for 24 h. These results directly indicate that the interaction of denatured UVβL-crystallin and α-crystallin does not lead to the refolding of denatured protein.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.

REFERENCES

  1. 1

    G. J. Caspers, J. A. Leunissen, and W. W. de Jong, J. Mol. Evol. 40, 238 (1995).

  2. 2

    H. Bloemendal, W. de Jong, R. Jaenicke, et al., Prog. Biophys. Mol. Biol. 86, 407 (2004).

  3. 3

    T. Iwaki, A. Kume-Iwaki, and J. E. Goldman, J. Histochem. Cytochem. 38, 31 (1990).

  4. 4

    R. Kannan, P. G. Sreekumar, and D. R. Hinton, Biochim. Biophys. Acta. 1860, 258 (2016).

  5. 5

    A. N. Srinivasan, C. N. Nagineni, and S. P. Bhat, J. Biol. Chem. 267, 23337 (1992).

  6. 6

    G. B. Benedek, Appl. Opt. 10, 459 (1971).

  7. 7

    M. Delaye and A. Tardieu, Nature (London, U.K.) 302, 415 (1983).

  8. 8

    A. Y. Mirarefi, S. Boutet, S. Ramakrishnan, et al., Biochim. Biophys. Acta. 1800, 556 (2010).

  9. 9

    B. K. Derham and J. J. Harding, Prog. Retin. Eye Res. 18, 463 (1999).

  10. 10

    J. Horwitz, Proc. Natl. Acad. Sci. U. S. A. 89, 10449 (1992).

  11. 11

    D. L. Boyle, L. Takemoto, J. P. Brady, et al., BMC Ophthalmol. 3, 3 (2003).

  12. 12

    J. Graw, Exp. Eye Res. 88, 173 (2009).

  13. 13

    W. F. Hu, L. Gong, Z. Cao, et al., Curr. Mol. Med. 12, 177 (2012).

  14. 14

    R. Maddala and V. P. Rao, Exp. Cell Res. 306, 203 (2005).

  15. 15

    M. Haslbeck and E. Vierling, J. Mol. Biol. 427, 1537 (2015).

  16. 16

    E. Ganea and J. J. Harding, Biochem. J. 345, 467 (2000).

  17. 17

    D. Nath, U. Rawat, R. Anish, et al., Protein Sci. 11, 2727 (2002).

  18. 18

    D. Rachdan, M. F. Lou, and J. J. Harding, Curr. Eye Res. 30, 919 (2005).

  19. 19

    Z. M. Bumagina, B. Y. Gurvits, N. V. Artemova, et al., Biophys. Chem. 146, 108 (2010).

  20. 20

    D. W. Hook and J. J. Harding, Int. J. Biol. Macromol. 22, 295 (1998).

  21. 21

    H. A. Khanova, K. A. Markossian, B. I. Kurganov, et al., Biochemistry. 44, 15480 (2005).

  22. 22

    O. I. Maloletkina, K. A. Markossian, N. A. Chebotareva, et al., Biophys. Chem. 163–164, 11 (2012).

  23. 23

    J. C. Javitt and H. R. Taylor, Doc. Ophthalmol. 88, 307 (1994).

  24. 24

    C. Artigas, A. Navea, M. M. Lopez-Murcia, et al., J. Fr. Ophtalmol. 37, 773 (2014).

  25. 25

    S. Lofgren, Invest Ophthalmol. Vis. Sci. 42, 1833 (2001).

  26. 26

    S. H. Chiou, P. Azari, M. E. Himmel, et al., Int. J. Pept. Protein Res. 13, 409 (1979).

  27. 27

    T. Putilina, F. Skouri-Panet, K. Prat, et al., J. Biol. Chem. 278, 13747 (2003).

  28. 28

    R. F. Itzhaki and D. M. Gill, Anal. Biochem. 9, 401 (1964).

  29. 29

    C. Slingsby and O. A. Bateman, Exp. Eye Res. 51, 21 (1990).

  30. 30

    K. Srivastava, R. Gupta, J. M. Chaves, et al., Biochemistry 48, 7179 (2009).

  31. 31

    K. O. Muranov, O. I. Maloletkina, N. B. Poliansky, et al., Exp. Eye Res. 92, 76 (2011).

  32. 32

    C. Delcourt, A. Cougnard-Gregroire, M. Boniol, et al., Invest Ophthalmol. Vis. Sci. 55, 7619 (2014).

  33. 33

    R. Setlow and B. Doyle, Biochim. Biophys. Acta. 24, 27 (1957).

  34. 34

    R. F. Borkman, G. Knight, and B. Obi, Exp. Eye Res. 62, 141 (1996).

Download references

Author information

Correspondence to K. O. Muranov.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not describe the results of any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by Sh. Galyaltdinov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Muranov, K.O., Poliansky, N.B., Kleimenov, S.Y. et al. Chaperone-Like Protein a-Crystallin Brakes the Aggregation but Does Not Support Refolding of UV-Damaged βL-Crystallin. Russ. J. Phys. Chem. B 13, 928–931 (2019). https://doi.org/10.1134/S1990793119060253

Download citation

Keywords:

  • α-crystallin
  • molecular chaperone
  • βL-crystallin
  • UV-light