Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Furodihydroquinolines as Novel Photosensitizers for Photochemotherapy

Abstract

New derivatives of furodihydroquinoline (FDHQ) with substituents at the 5 position of the benzene ring have been synthesized, and their photophysical and photochemical properties have been studied. The triplet nature of short-lived states generated on photoexcitation of FDHQ has been shown with the use of pulse photolysis and triplet–triplet energy transfer to biscarbocyanine dye. Spectral and kinetic parameters of the triplet states for the synthesized FDHQ have been established. It has been shown that the FDHQ triplet state participates in the formation of the reactive oxygen species (ROS). Processes involving the FDHQ triplet state are important for PUVA-therapy and other processes of photochemotherapy.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. 1

    D. Bethea, B. Fullmer, S. Syed, et al., J. Dermatol. Sci. 19, 78 (1999).

  2. 2

    Y. X. Wei, B. Sun, L. Xiao, et al., Transplant Proc. 50, 3906 (2018).

  3. 3

    T. C. Ling, T. H. Clayon, J. Crawley, et al., Braz. J. Dermatol. 174, 24 (2016).

  4. 4

    S. B. Pai and S. Shetty, Indian J. Dermatol. Venereol. Leprol. 81, 559 (2015).

  5. 5

    E. J. Yurkow and J. D. Laskin, Cancer Chemother. Pharmacol. 27, 315 (1991).

  6. 6

    J. Lauharanta, Clin. Dermatol. 15, 769 (1997).

  7. 7

    J. Krutmann, H. Hönigsmann, and C. A. Elmets, Dermatological Phototherapy and Photodiagnostic Methods, 2nd ed. (Springer, Berlin, 2009).

  8. 8

    Z. Kuzmina, D. Stroncek, and S. Z. Pavletic, J. Clin. Apher. 30, 224 (2015).

  9. 9

    R. Knobler, G. Berlin, P. Calzavara-Pinton, et al., J. Eur. Acad. Dermatol. Venereol. 28, 1 (2014).

  10. 10

    N. Raquet and D. Schrenk, Chem. Res. Toxicol. 22, 1639 (2009).

  11. 11

    X. Chen, J. Kagan, F. Dall’Acqua, et al., J. Photochem. Photobiol. B. 22, 51 (1994).

  12. 12

    F. A. Derheimer, J. K. Hicks, M. T. Paulsen, et al., Mol. Pharmacol. 75, 599 (2009).

  13. 13

    C. Marzano, A. Chilin, F. Bordin, et al., Bioorg. Med. Chem. 10, 2835 (2002).

  14. 14

    A. Chilin, C. Marzano, A. Guiotto, et al., J. Med. Chem. 45, 1146 (2002).

  15. 15

    E. N. Khodot, V. A. Kuzmin, et al., RF Patent No. 2614248 (2016).

  16. 16

    O. N. Lygo, T. D. Nekipelova, E. N. Khodot, V. A. Kuzmin, V. V. Shakhmatov, V. A. Volnukhin, V. V. Vargin, A. B. Shevelev, and A. V. Shibaeva, High Energy Chem. 46, 171 (2012).

  17. 17

    T. D. Nekipelova, O. N. Lygo, E. N. Khodot, V. A. Kuzmin, V. V. Shakhmatov, V. V. Vargin, A. V. Belyakova, and M. V. Zyl’kova, High Energy Chem. 46, 166 (2012).

  18. 18

    O. N. Lygo, T. D. Nekipelova, E. N. Khodot, V. V. Shakhmatov, A. S. Kononikhin, E. N. Nikolaev, and V. A. Kuzmin, High Energy Chem. 46, 358 (2012).

  19. 19

    V. A. Kuzmin, L. I. Mazaletskaya, T. D. Nekipelova, and E. N. Khodot, Russ. Chem. Bull. 57, 2405 (2008).

  20. 20

    A. A. Kostyukov, T. D. Nekipelova, Yu. E. Borisevich, and V. A. Kuzmin, High Energy Chem. 53, 87 (2019).

  21. 21

    A. M. Brouwer, Pure Appl. Chem. 83, 2213 (2011).

  22. 22

    K. Suzuki, A. Kobayashi, S. Kaneko, et al., Phys. Chem. Chem. Phys. 11, 9850 (2009).

  23. 23

    L. D. Ramos, H. M. Da Cruz, and K. P. Morelli Frin, Photochem. Photobiol. Sci. 16, 459 (2017).

  24. 24

    R. Ruiz-Gonzalez, R. Zanocco, Y. Gidi, et al., Photochem. Photobiol. 89, 1427 (2013).

  25. 25

    F. Tanaka, T. Furuta, M. Okamoto, et al., Phys. Chem. Chem. Phys. 6, 1219 (2004).

  26. 26

    V. G. Plotnikov and A. A. Ovchinnikov, Russ. Chem. Rev. 47, 247 (1978).

  27. 27

    V. P. Sakun, A. I. Shushin, and E. M. Balashov, Russ. J. Phys. Chem. B. 11, 715 (2017).

  28. 28

    A. I. Shushin and V. P. Sakun, Russ. J. Phys. Chem. B. 10, 181 (2016).

  29. 29

    O. N. Lygo, I. V. Shelaev, F. E. Gostev, T. D. Nekipelova, E. N. Khodot, Yu. P. Tsentalovich, A. A. Titov, V. A. Kuzmin, and O. M. Sarkisov, High Energy Chem. 47, 230 (2013).

Download references

ACKNOWLEDGMNTS

The spectral measurements were carried out in the Core Facility of IBCP RAS “New Materials and Technologies.”

Funding

The study was supported by the Russian Scientific Foundation, project no. 18-13-00463 “Mechanisms of Photochemical Processes in the Complexes of Polymethine Dyes with Two-conjugated Chromophores with Proteins.”

Author information

Correspondence to V. A. Kuzmin.

Additional information

Translated by T. Nekipelova

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kuzmin, V.A., Volnukhin, V.A., Egorov, A.E. et al. Furodihydroquinolines as Novel Photosensitizers for Photochemotherapy. Russ. J. Phys. Chem. B 13, 893–899 (2019). https://doi.org/10.1134/S199079311906023X

Download citation

Keywords:

  • photochemistry
  • triplet states
  • furodihydroquinolines
  • photochemotherapy
  • PUVA-therapy