Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Hydrochlorofluorocarbons Adsorption on Undoped and Al-Doped Graphene Nanoflakes by Using Density Functional Theory (DFT) Study

  • 2 Accesses

Abstract

Graphene nanoflakes used for detecting air pollutants are extremely needed for the sake of environmental protection. We investigated the Freon gas, R22, belonging to the group of Hydrochlorofluorocarbons considered to be very dangerous, due to their role in destructing of layer, and discussed the adsorption of R22 on the surface of pristine, one Al-atom and two Al-atoms doped Graphene Nanoflakes (GNFs). Besides, we have studied theoretically the geometrical optimization, electronic properties and adsorption of undoped and doped Graphene Nanoflakes. All calculations are based on the density functional theory (DFT). Results show that adding one atom or two atoms of aluminum to GNFs causes a big decrease in the energy gap; at the adsorption of Freon R22 molecules by two Al-atoms doped GNFs, the structure becomes less gas-sensitive than one Al-atom doped GNFs. The band gaps, density of states (DOS), dipole moments, total energies, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies have been calculated for undoped and doped with Al GNFs either with or without the Freon R22 gas molecules.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. 1

    S. S. Varghese, S. Swaminathan, K. K. Singh, and V. Mittal, Comput. Condens. Matter 9, 40 (2016).

  2. 2

    F. Schedin, A. Geim, S. Morozov, E. Hill, P. Blake, M. Katsnelson, and K. Novoselov, Nat. Mater. 6, 652 (2007).

  3. 3

    M. H. Al-Abboodi, F. N. Ajeel, and A. M. Khudhair, Phys. E (Amsterdam, Neth.) 88, 1 (2017).

  4. 4

    P. Giannozzi, R. Car, and G. Scoles, J. Chem. Phys. 118, 1003 (2003).

  5. 5

    Y. Dan, Y. Lu, N. J. Kybert, Z. Luo, and A. C. Johnson, Nano Lett. 9, 1472 (2009).

  6. 6

    Y.-H. Zhang, Y.-B. Chen, K.-G. Zhou, C.-H. Liu, J. Zeng, H.-L. Zhang, and Y. Peng, Nanotechnology. 20, 185504 (2009).

  7. 7

    F. Niu, L.-M. Tao, Y.-C. Deng, Q.-H. Wang, and W.-G. Song, New J. Chem. 38, 2269 (2014).

  8. 8

    A. S. Rad, Surf. Sci. 645, 6 (2016).

  9. 9

    P. A. Denis, Chem. Phys. Lett. 492, 251 (2010).

  10. 10

    T. J. Bandosz, J. Colloid Interface Sci. 246, 1 (2002).

  11. 11

    Y. Wang, Y. Shao, D. W. Matson, J. Li, and Y. Lin, ACS Nano. 4, 1790 (2010).

  12. 12

    L. Shao, G. Chen, H. Ye, Y. Wu, Z. Qiao, Y. Zhu, and H. Niu, Eur. Phys. J. B. 86, 54 (2013).

  13. 13

    Z. Ao, J. Yang, S. Li, and Q. Jiang, Chem. Phys. Lett. 461, 276 (2008).

  14. 14

    S. Benhadid-Dib and A. Benzaoui, Energy Proc. 18, 807 (2012).

  15. 15

    B. Bolaji and Z. Huan, Renewable Sustainable Energy Rev. 18, 49 (2013).

  16. 16

    W. Hu, L. Lin, C. Yang, and J. Yang, J. Chem. Phys. 141, 214704 (2014).

  17. 17

    R. G. Parr and W. Yang, J. Am. Chem. Soc. 106, 4049 (1984).

  18. 18

    A. G. Garcia, S. E. Baltazar, A. H. R. Castro, J. F. P. Robles, A. Rubio. J. Comput. Theor. Nanosci. 5, 2221 (2008).

  19. 19

    J. Dai, J. Yuan, and P. Giannozzi, Appl. Phys. Lett. 95, 23210 (2009).

  20. 20

    X. Zhang, Z. Dai, L. Wei, N. Liang, and X. Wu, Sensors. 13, 15159 (2013).

Download references

ACKNOWLEDGMENTS

The authors would like to thank the Iraqi Ministry of Higher Education and Scientific Research for its care of scientific researchers through the Iraqi Virtual Science Library (IVSL) and to Ast. Prof. Fouad N. Ajeel.

Author information

Correspondence to Ahmed J. Hassan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahmed J. Hassan Hydrochlorofluorocarbons Adsorption on Undoped and Al-Doped Graphene Nanoflakes by Using Density Functional Theory (DFT) Study. Russ. J. Phys. Chem. B 13, 1064–1069 (2019). https://doi.org/10.1134/S1990793119060186

Download citation

Keywords:

  • graphene nanoflakes
  • Al doped GNFs
  • DFT
  • energy gap
  • DOS
  • adsorption energies
  • gas-sensitive materials