Advertisement

Russian Journal of Physical Chemistry B

, Volume 13, Issue 5, pp 763–768 | Cite as

Structure and Sensing Properties of Nanostructured SnO2–In2O3 Composites Synthesized by the Impregnation Method

  • G. N. Gerasimov
  • V. F. Gromov
  • M. I. IkimEmail author
  • E. Yu. Spiridonova
  • M. M. Grekhov
  • L. I. Trakhtenberg
ELECTRICAL AND MAGNETIC PROPERTIES OF MATERIALS
  • 2 Downloads

Abstract

The structure and sensing properties of SnO2–In2O3 composites synthesized by the impregnation method are studied. These composites consist of In2O3 nanocrystals comprising SnO2 nanoclusters with a size of 5–7 nm on their surface. Using energy-dispersive X-ray spectroscopy, it is found that the SnO2 nanoclusters contain indium ions, which provide an increase in the number of catalytically active oxygen vacancies in them. The maximum efficiency of the synthesized composites for hydrogen detection in air is achieved at a SnO2 content in the composite of about 40 wt %. In this case, the high sensor sensitivity of the composite is attributed to the catalytic activity of SnO2 clusters containing indium ions and the high specific surface area of SnO2 aggregates, which provide the conductivity of the composite.

Keywords:

nanocomposite impregnation method cluster sensor response hydrogen 

Notes

FUNDING

This work was performed under a state task to Semenov Institute of Chemical Physics of the Russian Academy of Sciences (project 45.22 no. 0082-2018-0003 “Fundamentals of Designing New-Generation Nanostructured Systems with Unique Performance Characteristics” (AAAA-A18-118012390045-2)) and supported by the Russian Foundation for Basic Research (project nos. 17-07-00131a, 18-07-00551a, 19-07-00141a, and 19-07-00251a).

REFERENCES

  1. 1.
    N. Barsan and U. Weimar, J. Electroceram. 7, 143 (2001).CrossRefGoogle Scholar
  2. 2.
    N. Yamazoe and K. Shimanoe, Sens. Actuators, B 128, 566 (2008).CrossRefGoogle Scholar
  3. 3.
    G. N. Gerasimov, V. F. Gromov, O. J. Ilegbusi, and L. I. Trakhtenberg, Sens. Actuators, B 240, 613 (2017).CrossRefGoogle Scholar
  4. 4.
    V. Brinzari, I. Damaskin, L. Trakhtenberg, et al., Thin Solid Films 552, 225 (2014).CrossRefGoogle Scholar
  5. 5.
    L. I. Trakhtenberg, G. N. Gerasimov, L. N. Aleksandrova, and V. K. Potapov, Radiat. Phys. Chem. 65, 479 (2002).CrossRefGoogle Scholar
  6. 6.
    W. J. Moon, J. H. Yu, and C. G. Man, Sens. Actuators, B 87, 464 (2002).CrossRefGoogle Scholar
  7. 7.
    L. I. Trakhtenberg, G. N. Gerasimov, V. F. Gromov, et al., Sens. Actuators, B 169, 32 (2012).CrossRefGoogle Scholar
  8. 8.
    K.-W. Kim, P.-S. Cho, S.-J. Kim, et al., Sens. Actuators, B 123, 318 (2007).CrossRefGoogle Scholar
  9. 9.
    M. A. Kozhushner, L. I. Trakhtenberg, V. L. Bodneva, et al., J. Phys. Chem. C 118, 11440 (2014).CrossRefGoogle Scholar
  10. 10.
    G. Korotcenkov, S.-D. Han, B. K. Cho, and V. Brinzari, Crit. Rev. Solid State Mater. Sci. 34, 1 (2009).CrossRefGoogle Scholar
  11. 11.
    K. I. Gnanasekar, X. Jiang, J. C. Jiang, et al., J. Nanosci. Nanotechnol. 2, 189 (2002).CrossRefGoogle Scholar
  12. 12.
    M. M. Natile and A. Glisenti, J. Phys. Chem. B 110, 2515 (2006).CrossRefGoogle Scholar
  13. 13.
    G. N. Gerasimov, M. I. Ikim, P. S. Timashev, V. F. Gromov, T. V. Belysheva, E. Yu. Spiridonova, V. N. Bagratashvili, and L. I. Trakhtenberg, Russ. J. Phys. Chem. A 89, 1059 (2015).CrossRefGoogle Scholar
  14. 14.
    V. F. Gromov, G. N. Gerasimov, T. V. Belysheva, M. I. Ikim, E. Yu. Spiridonova, M. M. Grekhov, R. A. Ali-zade, and L. I. Trakhtenberg, Russ. J. Phys. Chem. B 12, 129 (2018).CrossRefGoogle Scholar
  15. 15.
    G. N. Gerasimov, M. M. Grekhov, V. F. Gromov, M. I. Ikim, E. Yu. Spiridonova, and L. I. Trakhtenberg, Russ. J. Phys. Chem. B 12, 709 (2018).CrossRefGoogle Scholar
  16. 16.
    H. Kim, C. M. Gilmore, A. Piqué, et al., J. Appl. Phys. 86, 6451 (1999).CrossRefGoogle Scholar
  17. 17.
    S. J. Wen, G. Coutirier, J. P. Chaminade, et al., J. Solid State Chem. 101, 203 (1992).CrossRefGoogle Scholar
  18. 18.
    H. Enoki, J. Echigoya, and H. Suto, J. Mater. Sci. 26, 4110 (1991).CrossRefGoogle Scholar
  19. 19.
    N. Savage, B. Chwieroth, A. Ginwalla, et al., Sens. Actuators, B 79, 17 (2001).CrossRefGoogle Scholar
  20. 20.
    G. Korotcenkov, V. Brinzari, J. Schwank, et al., Sens. Actuators, B 77, 244 (2001).CrossRefGoogle Scholar
  21. 21.
    M. A. Kozhushner, L. I. Trakhtenberg, A. C. Landerville, et al., J. Phys. Chem. C 117, 11562 (2013).CrossRefGoogle Scholar
  22. 22.
    G. J. Li, X. H. Zhang, and S. Kawi, Sens. Actuators, B 60, 64 (1999).CrossRefGoogle Scholar
  23. 23.
    J. Maier and W. Gopel, J. Solid State Chem. 72, 293 (1988).CrossRefGoogle Scholar
  24. 24.
    W. Gopel, G. Rocker, and R. Feierabend, Phys. Rev. B 28, 3427 (1983).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • G. N. Gerasimov
    • 1
    • 2
  • V. F. Gromov
    • 1
    • 2
  • M. I. Ikim
    • 1
    Email author
  • E. Yu. Spiridonova
    • 1
    • 2
  • M. M. Grekhov
    • 3
  • L. I. Trakhtenberg
    • 1
    • 2
  1. 1.Semenov Institute of Chemical Physics, Russian Academy of SciencesMoscowRussia
  2. 2.Karpov Institute of Physics and ChemistryMoscowRussia
  3. 3.National Research Nuclear University MEPhIMoscowRussia

Personalised recommendations