Advertisement

Russian Journal of Physical Chemistry B

, Volume 13, Issue 5, pp 778–788 | Cite as

Polyurethanes without Isocyanates and Isocyanates without Phosgene as a New Field of Green Chemistry: Mechanism, Catalysis, and Control of Reactivity

  • M. V. ZabalovEmail author
  • M. A. Levina
  • R. P. Tiger
CHEMICAL PHYSICS OF POLYMER MATERIALS
  • 11 Downloads

Abstract

A brief review of studies in the kinetics, catalysis, and reaction mechanisms of new green chemistry processes for polyurethanes performed at the Semenov Institute of Chemical Physics of the Russian Academy of Sciences over the past decade and a half is given. The review centers on the formation of hydroxyurethanes without the use of isocyanates on the basis of the reaction of cyclic carbonates with amines, the phosgene-free production of isocyanates by thermal decomposition of acylazides, and the prospects for using renewable plant-based raw materials for the production of novel polyurethanes.

Keywords:

kinetics catalysis reaction mechanism polyurethane green chemistry of polymers cyclic carbonate renewable plant-based raw materials 

Notes

FUNDING

This study was performed within State Assignment (topic V 45.5, 0082-2014-0015, no. AAAA-A17-117032750201-9) and with the financial support from the Russian Foundation for Basic Research (project no. 17-03-00146).

REFERENCES

  1. 1.
    A. Cornille, R. Auvergne, O. Figovsky, B. Boutevin, and S. Caillol, Eur. Polym. J. 87, 535 (2017).CrossRefGoogle Scholar
  2. 2.
    G. Rokicki, P. G. Parzuchowski, and M. Mazurek, Polym. Adv. Technol. 26, 707 (2015).CrossRefGoogle Scholar
  3. 3.
    L. Maisonneuve, O. Lamarzelle, E. Rix, E. Grau, and H. Cramail, Chem. Rev. 115, 12 407 (2015).CrossRefGoogle Scholar
  4. 4.
    H. Blattmann, M. Fleischer, M. Bähr, and R. Mülhaupt, Macromol. Rapid Commun. 35, 1238 (2014).CrossRefGoogle Scholar
  5. 5.
    O. Figovsky, L. Shapovalov, A. Leykin, R. Birukova, and R. Potashnikova, PU Mag. Int. 10, 256 (2013).Google Scholar
  6. 6.
    B. Nohra, L. Candy, J.-F. Blanco, et al., Macromolecules 46, 3771 (2013).CrossRefGoogle Scholar
  7. 7.
    O. Figovsky, L. Shapovalov, A. Leykin, R. Birukova, and R. Potashnikova, Int. Lett. Chem. Phys. Astron. 3, 52 (2012).CrossRefGoogle Scholar
  8. 8.
    J. Guan, Y. Song, Y. Lin, et al., Ind. Eng. Chem. Res. 50, 6517 (2011).CrossRefGoogle Scholar
  9. 9.
    K. Blazek and J. Datta, Crit. Rev. Env. Sci. Technol. 49 (2019).  https://doi.org/10.1080/10643389.2018.15377
  10. 10.
    R. P. Tiger, Polymer Sci., Ser. B 46, 142 (2004).Google Scholar
  11. 11.
    T. F. Garrison and M. R. Kessler, in Bio-Based Plant Oil Polymers and Composites, Ed. by S. A. Madbouly, C. Zhang, and M. R. Kessler (Elsevier, Amsterdam, 2016), p. 37.Google Scholar
  12. 12.
    R. M. Garipov, V. A. Sysoev, V. V. Mikheev, et al., Dokl. Phys. Chem. 393, 289 (2003).CrossRefGoogle Scholar
  13. 13.
    R. H. Lambert and T. J. Henderson, Polymer 54, 5568 (2013).CrossRefGoogle Scholar
  14. 14.
    M. V. Zabalov, R. P. Tiger, and A. A. Berlin, Dokl. Chem. 441, 355 (2011).CrossRefGoogle Scholar
  15. 15.
    M. V. Zabalov, R. P. Tiger, and A. A. Berlin, Russ. Chem. Bull. 61, 518 (2012).CrossRefGoogle Scholar
  16. 16.
    M. A. Levina, V. G. Krasheninnikov, M. V. Zabalov, and R. P. Tiger, Polymer Sci., Ser. B 56, 139 (2014).CrossRefGoogle Scholar
  17. 17.
    M. V. Zabalov, M. A. Levina, V. G. Krasheninnikov, and R. P. Tiger, Russ. Chem. Bull. 63, 1740 (2014).CrossRefGoogle Scholar
  18. 18.
    M. V. Zabalov and R. P. Tiger, Theor. Chem. Acc. 136, 95 (2017).CrossRefGoogle Scholar
  19. 19.
    M. V. Zabalov and R. P. Tiger, Russ. Chem. Bull. 65, 631 (2016).CrossRefGoogle Scholar
  20. 20.
    H. Tomita, F. Sanda, and N. Endo, J. Polym. Sci., Part A 39, 3678 (2001).CrossRefGoogle Scholar
  21. 21.
    O. Lamarzelle, P.-L. Durand, A.-L. Wirotius, et al., Polym. Chem. 7, 1439 (2016).CrossRefGoogle Scholar
  22. 22.
    A. Cornille, M. Blain, R. Auvergne, et al., Polym. Chem. 8, 592 (2017).CrossRefGoogle Scholar
  23. 23.
    M. A. Levina, M. V. Zabalov, V. G. Krasheninnikov, and R. P. Tiger, Polymer Sci., Ser. B 60, 563 (2018).Google Scholar
  24. 24.
    M. A. Levina, M. V. Zabalov, V. G. Krasheninnikov, and R. P. Tiger, Polymer Sci., Ser. B 59, 497 (2017).CrossRefGoogle Scholar
  25. 25.
    M. A. Levina, D. G. Miloslavskii, M. L. Pridatchenko, A. V. Gorshkov, V. T. Shashkova, E. M. Gotlib, and R. P. Tiger, Polymer Sci., Ser. B 57, 584 (2015).CrossRefGoogle Scholar
  26. 26.
    M. V. Zabalov and R. P. Tiger, Russ. Chem. Bull. 54, 2270 (2005).CrossRefGoogle Scholar
  27. 27.
    M. V. Zabalov and R. P. Tiger, Russ. Chem. Bull. 56, 7 (2007).CrossRefGoogle Scholar
  28. 28.
    M. V. Zabalov and R. P. Tiger, Russ. Chem. Bull. 61, 1694 (2012).CrossRefGoogle Scholar
  29. 29.
    M. V. Zabalov and R. P. Tiger, J. Mol. Struct.: THEOCHEM 962, 15 (2010).CrossRefGoogle Scholar
  30. 30.
    R. P. Tiger, M. V. Zabalov, and N. V. Ptitsyna, Kinet. Catal. 50, 377 (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Semenov Institute of Chemical Physics, Russian Academy of SciencesMoscowRussia

Personalised recommendations