Advertisement

Russian Journal of Physical Chemistry B

, Volume 13, Issue 5, pp 842–848 | Cite as

Flow Bifurcations of Shear-Thinning Fluids in a Channel with Sudden Contraction and Expansion

  • S. A. PatlazhanEmail author
  • D. E. Roshchin
  • I. V. Kravchenko
  • A. A. Berlin
CHEMICAL PHYSICS OF POLYMER MATERIALS
  • 9 Downloads

Abstract

The flow bifurcation transitions of shear-thinning fluids in a channel with sudden contraction and expansion are studied by means of numerical modeling. The rheological properties of the non-Newtonian fluids under consideration are described with the Carreau–Yasuda model. Flow-bifurcation diagrams for media with different viscosity curves are calculated. It is shown that the values of the critical Reynolds number in the bifurcation point and length of the formed corner vortices substantially depend on the slope of the viscosity curve.

Keywords:

variable cross-section channel shear-thinning fluids flow bifurcation 

Notes

ACKNOWLEDGMENTS

The numerical calculations were performed using the computational resources of the Joint Supercomputer Center of the Russian Academy of Sciences.

FUNDING

The scientific research work was supported in part by grants within the framework of the State Assignments under Contract nos. 0082-2014-0013 and 0089-2019-0001, and by the Russian Foundation for Basic Research (project no. 18-29-17072).

REFERENCES

  1. 1.
    J. Eggers and E. Villermaux, Rep. Prog. Phys. 71, 036601 (2008).CrossRefGoogle Scholar
  2. 2.
    Y. A. Litvinenko, G. R. Grek, G. V. Kozlov, et al., EUCASS Proc. Ser. 3, 429 (2012).Google Scholar
  3. 3.
    J. Rondin, M. Bouquey, R. Muller, et al., Polym. Eng. Sci. 54, 1444 (2014).CrossRefGoogle Scholar
  4. 4.
    M. S. N. Oliveira, L. E. Rodd, G. H. McKinley, et al., Microfluid Nanofluid 5, 809 (2008).CrossRefGoogle Scholar
  5. 5.
    C. H. Tsai, H. T. Chen, Y. N. Wang, et al., Microfluid Nanofluid 3, 13 (2007).CrossRefGoogle Scholar
  6. 6.
    I. V. Kravchenko, S. A. Patlazhan, R. Muller, et al., J. Phys.: Conf. Ser. 774, 012026 (2016).Google Scholar
  7. 7.
    A. A. Konoplev, G. G. Aleksanyan, B. L. Rytov, et al., Theor Found. Chem. Eng. 41, 526 (2007).CrossRefGoogle Scholar
  8. 8.
    M. Motaharinezhad, S. Shahraki, R. Tirgar, et al., Indian J. Sci. Res. 1, 47 (2014).Google Scholar
  9. 9.
    K. S. Minsker, A. A. Berlin, V. P. Zakharov, and G. E. Zaikov, Fast Liquid-Phase Processes in Turbulent Flows (Taylor and Francis, Utrecht, Boston, 2004).CrossRefGoogle Scholar
  10. 10.
    L. Dong and Z. Shufen, Int. J. Chem. React. Eng. 12, 465 (2014).CrossRefGoogle Scholar
  11. 11.
    W. Cherdron, F. Durst, and J. H. Whitelaw, J. Fluid Mech. 84, 13 (1978).CrossRefGoogle Scholar
  12. 12.
    R. J. Poole, M. P. Escudier, and P. J. Oliveira, Proc. R. Soc. London, Ser. A 461, 3827 (2005).CrossRefGoogle Scholar
  13. 13.
    P. J. Oliveira, J. Non-Newton. Fluid Mech. 160, 40 (2009).Google Scholar
  14. 14.
    A. Lanzaro and X. F. Yuan, J. Non-Newton. Fluid Mech. 166, 1064 (2011).Google Scholar
  15. 15.
    P. Ternik, J. Non-Newton. Fluid Mech. 157, 15 (2009).Google Scholar
  16. 16.
    P. Ternik, J. Non-Newton. Fluid Mech. 165, 1400 (2010).Google Scholar
  17. 17.
    S. Dhinakaran, M. S. N. Oliveira, F. T. Pinho, et al., J. Non-Newton. Fluid Mech. 198, 48 (2013).Google Scholar
  18. 18.
    C. M. Balan and C. Balan, U.P.B. Sci. Bull., Ser. D 72, 121 (2010).Google Scholar
  19. 19.
    A. S. Haase, J. A. Wood, L. M. J. Sprakel, et al., Phys. Rev. E 95, 023105 (2017).CrossRefGoogle Scholar
  20. 20.
    A. A. Al-Habahbeh, PhD Thesis (Michigan Technological Univ., 2013).Google Scholar
  21. 21.
    J. Boyd, J. M. Buick, and S. Green, Phys. Fluids 19, 093103 (2007).CrossRefGoogle Scholar
  22. 22.
    L. Wang and F.-B. Tian, Appl. Sci. 8, 559 (2018).CrossRefGoogle Scholar
  23. 23.
    R. Pravesh, A. Dhiman, and R. P. Bharti, J. Brazil. Soc. Mech. Sci. Eng. 41, 88 (2019).Google Scholar
  24. 24.
    R. Manica and A. L. de Bortoli, J. Non-Newton. Fluid Mech. 121, 35 (2004).Google Scholar
  25. 25.
    S. A. Patlazhan, I. V. Kravchenko, and R. Myuller, Dokl. Phys. 62, 145 (2017).CrossRefGoogle Scholar
  26. 26.
    H. G. Weller, G. Tabor, H. Jasak, et al., Comput. Phys. 12, 620 (1998).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • S. A. Patlazhan
    • 1
    Email author
  • D. E. Roshchin
    • 2
    • 3
  • I. V. Kravchenko
    • 2
  • A. A. Berlin
    • 1
  1. 1.Semenov Federal Research Center for Chemical Physics, Russian Academy of SciencesMoscowRussia
  2. 2.Institute of Problems of Chemical Physics, Russian Academy of SciencesChernogolovkaRussia
  3. 3.Moscow Institute of Physics and Technology (National Research University)DolgoprudnyRussia

Personalised recommendations