Advertisement

Russian Journal of Physical Chemistry B

, Volume 13, Issue 5, pp 825–830 | Cite as

Influence of the Chemical Nature and Structural Characteristics of Nanofillers on the Mechanism of Polyethylene Pyrolysis

  • P. N. BrevnovEmail author
  • L. A. Novokshonova
  • V. G. Krasheninnikov
  • M. V. Gudkov
  • E. V. Koverzanova
  • S. V. Usachev
  • N. G. Shilkina
  • S. M. Lomakin
CHEMICAL PHYSICS OF POLYMER MATERIALS
  • 9 Downloads

Abstract

The influence of different types of nanofillers on the mechanism of polyethylene thermal degradation is studied. The composition of the products of pyrolysis of composite material was evaluated using gas chromatography–mass spectrometry (GC–MS). It has been found that incorporating carbon nanofillers (carbon nanotubes, graphite nanoplates, and reduced graphite oxide) into polyethylene leads to increase in the fraction of heavy hydrocarbons of the pyrolysis products. The varying influence of carbon fillers on the pyrolysis process is explained in terms of the surface defectiveness of the fillers and their specific effect on the segmental mobility of the polyethylene macroradicals within the framework of the previously proposed theory. The use of montmorillonite-layered silicate as a filler leads to a qualitative change in the composition of pyrolysis products, which is caused by the presence of catalytic acid sites and the ionic character of the polyethylene thermal degradation mechanism.

Keywords:

pyrolysis thermal degradation GC–MS nanocomposites polyethylene montmorillonite carbon nanotubes graphite nanoplates graphite oxide 

Notes

FUNDING

This work was supported in terms of the RF Government task (0082-2014-0014, AAAA-A17-117111600093-8, 0120125305).

REFERENCES

  1. 1.
    K. Müller, E. Bugnicourt, M. Latorre, et al., Nanomaterials 7, 74 (2017).CrossRefGoogle Scholar
  2. 2.
    V. Hussian, M. Hojjati, M. Okamoto, and R. E. Gorga, J. Compos. Mater. 40, 1511 (2006).CrossRefGoogle Scholar
  3. 3.
    V. Mittal, Thermally Stable and Flame Retardant Polymer Nanocomposites (Cambridge Univ. Press, 2011).CrossRefGoogle Scholar
  4. 4.
    V. Mittal, Advances in Polyolefin Nanocomposites, 1st ed. (CRC, Boca Raton, FL, 2010).CrossRefGoogle Scholar
  5. 5.
    J. W. Gilman, Appl. Clay Sci. 15, 31 (1999).CrossRefGoogle Scholar
  6. 6.
    G. W. Gilman, C. L. Jackson, A. B. Morgan, et al., Chem. Mater. 12, 1866 (2000).CrossRefGoogle Scholar
  7. 7.
    S. D. Burnside and E. P. Giannelis, Chem. Mater. 7, 1596 (1995).CrossRefGoogle Scholar
  8. 8.
    M. Zanetti, P. Bracco, and L. Costa, Polym. Degrad. Stab. 85, 657 (2004).CrossRefGoogle Scholar
  9. 9.
    A. D. Rakhimkulov, S. M. Lomakin, and I. L. Dubnikova, J. Mater. Sci. 45, 633 (2010).CrossRefGoogle Scholar
  10. 10.
    S. M. Lomakin, I. L. Dubnikova, S. M. Berezina, and G. E. Zaikov, Polymer Sci., Ser. A 48, 72 (2006).CrossRefGoogle Scholar
  11. 11.
    S. Lomakin, P. Brevnov, E. Koverzanova, S. Usachev, N. Shilkina, L. Novokshonova, V. Krasheninnikov, et al., J. Anal. Appl. Pyrolys. C 128, 275 (2017).CrossRefGoogle Scholar
  12. 12.
    P. N. Brevnov, G. R. Kirsankina, A. S. Zabolotnov, V. G. Krasheninnikov, V. G. Grinev, N. G. Berezkina, E. A. Sinevich, M. A. Shcherbina, and L. A. Novokshonova, Polymer Sci., Ser. C 58, 38 (2016).CrossRefGoogle Scholar
  13. 13.
    Yu. G. Kryazhev, Yu. M. Volfkovich, V. P. Mel’nikov, et al., Prot. Met. Phys. Chem. Surf. 53, 422 (2017).CrossRefGoogle Scholar
  14. 14.
    P. N. Brevnov, A. S. Zabolotnov, V. G. Krasheninnikov, B. V. Pokid’ko, A. V. Bakirov, O. N. Babkina, and L. A. Novokshonova, Kinet. Catal. 57, 482 (2016).CrossRefGoogle Scholar
  15. 15.
    M. L. Poutsma, Macromolecules 36, 8931 (2003).CrossRefGoogle Scholar
  16. 16.
    M. Paabo and B. C. Levin, Fire Mater 11, 55 (1987).CrossRefGoogle Scholar
  17. 17.
    R. P. Lattimer, J. Anal. Appl. Pyrolys. 31, 203 (1995).CrossRefGoogle Scholar
  18. 18.
    L. Soják, Pet. Coal 48, 1 (2006).Google Scholar
  19. 19.
    C. H. Bamford and C. F. H. Tipper, in Degradation of Polymers (Elsevier Sci., New York, Amsterdam, Oxford, 1975), Vol. 14, p. 33.Google Scholar
  20. 20.
    T. Kuroki, T. Sawaguchi, S. Niikuni, and T. Ikemura, Macromolecules 15, 1460 (1982).CrossRefGoogle Scholar
  21. 21.
    H. Bockhorn, A. Hornung, U. Hornung, and D. Schawaller, J. Anal. Appl. Pyrolys. 48, 93 (1999).CrossRefGoogle Scholar
  22. 22.
    J. P. Rabe and S. Buchholz, Science (Washington, DC, U. S.) 253, 424 (1991).CrossRefGoogle Scholar
  23. 23.
    S. Magonov and N. Yerina, Macromolecules 36, 5637 (2003).CrossRefGoogle Scholar
  24. 24.
    A. Tracz, J. K. Jeszka, I. Kucińska, et al., J. Appl. Polym. Sci. 86, 1329 (2002).CrossRefGoogle Scholar
  25. 25.
    S. Kumar, A. K. Panda, and R. K. Sing, Resources, Conserv. Recycl. 55, 893 (2011).CrossRefGoogle Scholar
  26. 26.
    C. Breen, P. M. Last, S. Taylor, and P. Komadel, Thermochim. Acta 363, 93 (2000).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • P. N. Brevnov
    • 1
    Email author
  • L. A. Novokshonova
    • 1
  • V. G. Krasheninnikov
    • 1
  • M. V. Gudkov
    • 1
  • E. V. Koverzanova
    • 1
  • S. V. Usachev
    • 1
  • N. G. Shilkina
    • 1
  • S. M. Lomakin
    • 2
  1. 1.Semenov Institute of Chemical Physics, Russian Academy of SciencesMoscowRussia
  2. 2.Emanuel Institute of Biochemical Physics, Russian Academy of SciencesMoscowRussia

Personalised recommendations