Advertisement

Russian Journal of Physical Chemistry B

, Volume 13, Issue 5, pp 755–762 | Cite as

Effects of Aluminum Additions on the Specific Impulse of Propellants Based on High-Enthalpy Oxidizers Containing NO2 and NF2 Groups

  • E. M. Dorofeenko
  • A. B. Sheremetev
  • D. B. LempertEmail author
COMBUSTION, EXPLOSION, AND SHOCK WAVES

Abstract

The combustion products ratio and the energy characteristics were evaluated for solid composite propellants containing a mixture of 5,10-bis(trinitromethyl)furazano[3,4-e]di([1,2,4]triazolo)[4,3-a:3',4'-c]pyrazine (I) and 5,10-bis(difluoroamino-dinitromethyl)furazano[3,4-e]di([1,2,4]triazolo)[4,3-a:3',4'-c]pyrazine (II), a binder, and aluminum in various ratios. The introduction of small amounts of Al made it possible to increase the achieved specific impulse Isp by 2.0–2.5 s; the increase was maximum at F/H > 1, but stopped after COF2 started to form in the combustion products at the nozzle exit.

Keywords:

difluoroamines nitro compounds specific impulse combustion temperature solid composite propellant aluminum 

Notes

FUNDING

This study was financially supported by the Institute of Problems of Chemical Physics, Russian Academy of Sciences (topic no. 0089-2014-0019 “Creation of high-energy materials and technologies for developed and advanced systems”) and the Presidium of the Russian Academy of Sciences (program “Basic principles of innovative technologies for national safety purposes,” topic “Studies of working processes during combustion of solid propellants in the combustion chamber of a high-speed direct flow ramjet engine”).

REFERENCES

  1. 1.
    A. V. Fokin and Yu. N. Studnev, Russ. Chem. Bull. 31, 1609 (1982).CrossRefGoogle Scholar
  2. 2.
    K. K. Kuo and G. Young, Proc. Combust. Inst. 29, 2947 (2002).CrossRefGoogle Scholar
  3. 3.
    R. D. Chapman, High Energy Density Mater., 123 (2007).Google Scholar
  4. 4.
    V. I. Pepekin, Yu. A. Lebedev, G. G. Rozantsev, A. A. Fainzil’berg, and A. Ya. Apin, Izv. Akad. Nauk SSSR, Ser. Khim., No. 2, 452 (1969).Google Scholar
  5. 5.
    B. V. Litvinov, A. A. Fainzil’berg, V. I. Pepekin, S. P. Smirnov, B. G. Loboiko, et al., Dokl. Akad. Nauk 336, 67 (1994).Google Scholar
  6. 6.
    V. I. Pepekin, Khim. Fiz. 13 (1), 42 (1994).Google Scholar
  7. 7.
    A. V. Fokin, Yu. N. Studnev, and L. D. Kuznetsova, in Reactions and Methods for the Study of Organic Compounds, Ed. by I. L. Knunyants, N. N. Mel’nikov, and V. D. Simonov (Khimiya, Moscow, 1976), Vol. 24, p. 7 [in Russian].Google Scholar
  8. 8.
    V. N. Grebennikov, G. B. Manelis, G. M. Nazin, and A. V. Fokin, Russ. Chem. Bull. 43, 315 (1994).CrossRefGoogle Scholar
  9. 9.
    V. N. Grebennikov, G. M. Nazin, and G. B. Manelis, Russ. Chem. Bull. 44, 628 (1995).CrossRefGoogle Scholar
  10. 10.
    V. N. Grebennikov, G. B. Manelis, and G. M. Nazin, in Proceedings of the 27th International Annual Conference of ICT (Energetic Materials), 1996, p. 8.1.Google Scholar
  11. 11.
    A. V. Fokin, Y. N. Studnev, and L. D. Kuznetsova, Russ. Chem. Bull. 45, 1952 (1996).CrossRefGoogle Scholar
  12. 12.
    V. Pepekin, Proc. Int. Pyrotech. Seminar 24, 427 (1998).Google Scholar
  13. 13.
    G. M. Nazin, V. G. Prokudin, and G. B. Manelis, Russ. Chem. Bull. 49, 234 (2000).CrossRefGoogle Scholar
  14. 14.
    A. V. Fokin, Yu. N. Studnev, V. P. Stolyarov, and A. A. Mel’nikov, Russ. Chem. Bull. 49, 949 (2000).CrossRefGoogle Scholar
  15. 15.
    A. V. Pozdnyakov, Fiz. Goreniya Vzryva 38 (3), 96 (2002).Google Scholar
  16. 16.
    H. Li, R. Pan, W. Wang, and L. Zhang, Propell., Explos., Pyrotech. 39, 819 (2014).CrossRefGoogle Scholar
  17. 17.
    F. Aghabozorgi and M. Hamadanian, J. Struct. Chem. 55, 831 (2014).CrossRefGoogle Scholar
  18. 18.
    D. B. Lempert and E. M. Dorofeenko, Centr. Eur. J. Energ. Mater. 12, 35 (2015).Google Scholar
  19. 19.
    I. L. Dalinger, A. Kh. Shakhnes, K. A. Monogarov, K. Yu. Suponitsky, and A. B. Sheremetev, Mendeleev Commun. 25, 429 (2015).CrossRefGoogle Scholar
  20. 20.
    V. V. Semenov, S. A. Shevelev, A. B. Bruskin, A. K. Shakhnes, and V. S. Kuz’min, Chem. Heterocycl. Compd. 53, 728 (2017).CrossRefGoogle Scholar
  21. 21.
    L. Zhang, Y. Chen, H. Hao, S. Xu, H. Li, et al., Thermochim. Acta 661, 1 (2018).CrossRefGoogle Scholar
  22. 22.
    J. Chen, Y. Yu, Y. Li, and S. Pang, J. Fluorine Chem. 205, 35 (2018).CrossRefGoogle Scholar
  23. 23.
    D. B. Lempert, G. H. Nechiporenko, S. I. Soglasnova, and L. N. Stesik, Khim. Fiz. 18 (9), 80 (1999).Google Scholar
  24. 24.
    D. B. Lempert and E. M. Dorofeenko, Combust. Explos., Shock Waves 50, 447 (2014).CrossRefGoogle Scholar
  25. 25.
    D. B. Lempert and A. B. Sheremetev, Russ. Chem. Bull. 67, 2065 (2018).CrossRefGoogle Scholar
  26. 26.
    B. G. Trusov, in Proceedings of the 14th International Congress on Chemical Thermodynamics (NII Khim. SPbGU, St. Petersburg, 2002), p. 483.Google Scholar
  27. 27.
    A. B. Sheremetev, V. L. Korolev, A. A. Potemkin, N. S. Aleksandrova, N. V. Palysaeva, et al., Asian J. Org. Chem. 5, 1388 (2016).CrossRefGoogle Scholar
  28. 28.
    D. Lempert and G. Nechiporenko, Centr. Eur. J. Energ. Mater. 3 (4), 73 (2006).Google Scholar
  29. 29.
    Thermodynamic and Thermophysical Properties of Combustion Products, Reference Book, in 5 Vols., Ed. by V. P. Glushko (Akad. Nauk SSSR, Moscow, 1971) [in Russian].Google Scholar
  30. 30.
    D. B. Lempert and G. N. Nechiporenko, Russ. J. Phys. Chem. B 2, 883 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • E. M. Dorofeenko
    • 1
  • A. B. Sheremetev
    • 2
  • D. B. Lempert
    • 1
    Email author
  1. 1.Institute of Problems of Chemical Physics, Russian Academy of SciencesChernogolovkaRussia
  2. 2.Zelinskii Institute of Organic Chemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations