Advertisement

Russian Journal of Physical Chemistry B

, Volume 13, Issue 5, pp 884–891 | Cite as

Altitudinal Extent of Winter Anomaly and Its Manifestation in the Total Electron Content

  • M. V. KlimenkoEmail author
  • V. V. Klimenko
  • I. E. Zakharenkova
  • K. G. Ratovsky
  • A. S. Yasyukevich
  • Yu. V. Yasyukevich
CHEMICAL PHYSICS OF ATMOSPHERIC PHENOMENA
  • 3 Downloads

Abstract

Using a global, self-consistent model of the thermosphere, ionosphere, and protonosphere, as well as satellite and radar data, the spatiotemporal extent of the ionospheric winter anomaly is studied. It is shown that the morphological features (longitudinal variation and dependence on solar activity) of the manifestations of winter anomaly in the total electron content and in the electron concentration at altitudes above the maximum of the F2 layer are similar to each other. The results of simulation indicate that the high-altitude region of the manifestation of the winter anomaly is much wider than earlier reporting has found.

Keywords:

simulation winter anomaly electron concentration ionospheric F2 layer external ionosphere total electron content 

Notes

ACKNOWLEDGMENTS

We thank the IGS service (ftp://cddis.gsfc.nasa.gov/ gnss/products/ionex/) for the provision of TEC maps and the ISDC GFZ (https://isdc.gfz-potsdam.de) for its provision of data from the CHAMP and GRACE satellites.

FUNDING

The study of the winter anomaly manifestation in TEC was supported by the Russian Foundation for Basic Research, grant no. 18-35-20038-mol_a_ved (A.S. Yasyukevich and Yu.V. Yasyukevich). The analysis and processing of the incoherent scatter radar data and the GRACE and CHAMP satellite data, as well as the study of the vertical structure of the winter anomaly on the basis of the GSM TIP model, were supported by the Russian Foundation for Basic Research within the framework of the research project no. 18-55-52006 MNT_a (K.G. Ratovsky, V.V. Klimenko, M.V. Klimenko, and I.E. Zakharenkova). Experimental results were obtained using the unique scientific facility Irkutsk Incoherent Scatter Radar (http://ckp-rf.ru/usu/77733/), funded by the core funding of Program FNI II.12. We used data processing techniques developed within the core funding of Program FNI II-16.

REFERENCES

  1. 1.
    H. Rishbeth, J. Atmos. Sol.-Terr. Phys. 60, 1385 (1998).CrossRefGoogle Scholar
  2. 2.
    D. F. Strobel and M. B. McElroy, Planet. Space Sci. 18, 1181 (1970).CrossRefGoogle Scholar
  3. 3.
    D. G. Torr, M. R. Torr, and P. G. Richards, Geophys. Res. Lett. 7, 301 (1980).CrossRefGoogle Scholar
  4. 4.
    L. Zou, H. Rishbeth, I. C. F. Muller-Wodarg, et al., Ann. Geophys. 18, 927 (2000).CrossRefGoogle Scholar
  5. 5.
    H. Rishbeth, I. C. F. Muller-Wodarg, L. Zou, et al., Ann. Geophys. 18, 945 (2000).CrossRefGoogle Scholar
  6. 6.
    A. G. Burns, W. Wang, L. Qian, et al., J. Geophys. Res. 119, 4938 (2014).CrossRefGoogle Scholar
  7. 7.
    M. R. Torr and D. G. Torr, J. Atmos. Terr. Phys. 35, 2237 (1973).  https://doi.org/10.1016/0021-9169(73)90140-2 CrossRefGoogle Scholar
  8. 8.
    A. V. Pavlov and N. M. Pavlova, Geomagn. Aeron. 52, 335 (2012).CrossRefGoogle Scholar
  9. 9.
    J. W. King, G. L. Hawkins, and C. Seabrook, J. Atmos. Terr. Phys. 30, 1701 (1968).  https://doi.org/10.1016/0021-9169(68)90018-4 CrossRefGoogle Scholar
  10. 10.
    M. N. Fatkullin, J. Atmos. Terr. Phys. 32, 1067 (1970).  https://doi.org/10.1016/0021-9169(70)90118-2 CrossRefGoogle Scholar
  11. 11.
    N. M. Boenkova and N. V. Mednikova, Geomagn. Aeron. 12, 335 (1972).Google Scholar
  12. 12.
    W. K. Lee, H. Kil, Y. S. Kwak, et al., J. Geophys. Res. 116, A02302 (2011).  https://doi.org/10.1029/2010JA015815 CrossRefGoogle Scholar
  13. 13.
    A. V. Mikhailov and L. Perrone, J. Geophys. Res. 119, 7972 (2014).  https://doi.org/10.1002/2014JA020185 CrossRefGoogle Scholar
  14. 14.
    B. Zhao, W. Wan, L. Liu, et al., Ann. Geophys. 25, 2513 (2017).  https://doi.org/10.5194/angeo-25-2513-2007 CrossRefGoogle Scholar
  15. 15.
    X. L. Huo, Y. B. Yuan, J. K. Ou, et al., Earth Planets Space 61, 1019 (2009).  https://doi.org/10.1186/BF03352952 CrossRefGoogle Scholar
  16. 16.
    Y. Yasyukevich, A. Yasyukevich, K. Ratovsky, et al., J. Space Weather Space Clim. 8, A45 (2018).  https://doi.org/10.1051/swsc/2018036 CrossRefGoogle Scholar
  17. 17.
    A. J. Mannucci, B. D. Wilson, D. N. Yuan, et al., Radio Sci. 33, 565 (1998).  https://doi.org/10.1029/97RS02707 CrossRefGoogle Scholar
  18. 18.
    M. Rother, S. Choi, W. Mai, et al., Earth Observation with CHAMP (Springer, 2004), p. 413.  https://doi.org/10.1007/b138105 Google Scholar
  19. 19.
    G. Beyerle, T. Schmidt, G. Michalak, et al., Geophys. Res. Lett. 32, L13806 (2005).  https://doi.org/10.1029/2005GL023109 CrossRefGoogle Scholar
  20. 20.
    A. P. Potekhin, A. V. Medvedev, A. V. Zavorin, D. S. Kushnarev, V. P. Lebedev, V. V. Lepetaev, and B. G. Shpynev, Geomagn. Aeron. 49, 1011 (2009).  https://doi.org/10.1134/S0016793209070299 CrossRefGoogle Scholar
  21. 21.
    K. G. Ratovsky, A. V. Dmitriev, A. V. Suvorova, et al., Adv. Space Res. 60, 452 (2017).  https://doi.org/10.1016/j.asr.2016.12.026 CrossRefGoogle Scholar
  22. 22.
    G. A. Zherebtsov, K. G. Ratovsky, M. V. Klimenko, et al., Adv. Space Res. 60, 444 (2017).  https://doi.org/10.1016/j.asr.2016.12.008 CrossRefGoogle Scholar
  23. 23.
    A. A. Namgaladze, Yu. N. Koren’kov, V. V. Klimenko, et al., Geomagn. Aeron. 30, 612 (1990).Google Scholar
  24. 24.
    Y. N. Korenkov, V. V. Klimenko, M. Forster, et al., J. Geophys. Res. 103, A14, 697 (1998).  https://doi.org/10.1029/98JA00210 CrossRefGoogle Scholar
  25. 25.
    M. V. Klimenko, V. V. Klimenko, and V. V. Bryukhanov, Geomagn. Aeron. 46, 457 (2006).CrossRefGoogle Scholar
  26. 26.
    V. V. Klimenko, A. T. Karpachev, and M. V. Klimenko, Russ. J. Phys. Chem. B 7, 611 (2013).  https://doi.org/10.7868/S0207401X13090070 CrossRefGoogle Scholar
  27. 27.
    V. V. Klimenko, A. T. Karpachev, M. V. Klimenko, K. G. Ratovsky, and N. A. Korenkova, Russ. J. Phys. Chem. B 10, 91 (2016).  https://doi.org/10.7868/S0207401X16010088 CrossRefGoogle Scholar
  28. 28.
    M. V. Klimenko, V. V. Klimenko, and I. E. Zakharenkova, Russ. J. Phys. Chem. B 10, 100 (2016).  https://doi.org/10.7868/S0207401X1601009X CrossRefGoogle Scholar
  29. 29.
    M. V. Klimenko, V. V. Klimenko, A. T. Karpachev, et al., Adv. Space Res. 55, 2020 (2015).  https://doi.org/10.1016/j.asr.2014.12.032 CrossRefGoogle Scholar
  30. 30.
    M. V. Klimenko, V. V. Klimenko, K. G. Ratovsky, et al., Adv. Space Res. 56, 1951 (2015).  https://doi.org/10.1016/j.asr.2015.07.019 CrossRefGoogle Scholar
  31. 31.
    M. V. Klimenko, V. V. Klimenko, I. E. Zakharenkova, et al., Radio Sci. 51, 1864 (2015).  https://doi.org/10.1002/2015RS005900 CrossRefGoogle Scholar
  32. 32.
    D. V. Chugunin, M. V. Klimenko, and V. V. Klimenko, Russ. J. Phys. Chem. B 12, 522 (2018).  https://doi.org/10.7868/S0207401X18050035 CrossRefGoogle Scholar
  33. 33.
    R. Lukianova and F. Christiansen, J. Geophys. Res. 111, A03213 (2006).  https://doi.org/10.1029/2005JA011465 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • M. V. Klimenko
    • 1
    Email author
  • V. V. Klimenko
    • 1
  • I. E. Zakharenkova
    • 1
  • K. G. Ratovsky
    • 2
  • A. S. Yasyukevich
    • 2
  • Yu. V. Yasyukevich
    • 2
    • 3
  1. 1.West Department of Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation, Russian Academy of SciencesKaliningradRussia
  2. 2.Institute of Solar-Terrestrial Physics, Siberian Branch, Russian Academy of SciencesIrkutskRussia
  3. 3.Irkutsk State UniversityIrkutskRussia

Personalised recommendations