Russian Journal of Physical Chemistry B

, Volume 13, Issue 5, pp 884–891 | Cite as

Altitudinal Extent of Winter Anomaly and Its Manifestation in the Total Electron Content

  • M. V. KlimenkoEmail author
  • V. V. Klimenko
  • I. E. Zakharenkova
  • K. G. Ratovsky
  • A. S. Yasyukevich
  • Yu. V. Yasyukevich


Using a global, self-consistent model of the thermosphere, ionosphere, and protonosphere, as well as satellite and radar data, the spatiotemporal extent of the ionospheric winter anomaly is studied. It is shown that the morphological features (longitudinal variation and dependence on solar activity) of the manifestations of winter anomaly in the total electron content and in the electron concentration at altitudes above the maximum of the F2 layer are similar to each other. The results of simulation indicate that the high-altitude region of the manifestation of the winter anomaly is much wider than earlier reporting has found.


simulation winter anomaly electron concentration ionospheric F2 layer external ionosphere total electron content 



We thank the IGS service ( gnss/products/ionex/) for the provision of TEC maps and the ISDC GFZ ( for its provision of data from the CHAMP and GRACE satellites.


The study of the winter anomaly manifestation in TEC was supported by the Russian Foundation for Basic Research, grant no. 18-35-20038-mol_a_ved (A.S. Yasyukevich and Yu.V. Yasyukevich). The analysis and processing of the incoherent scatter radar data and the GRACE and CHAMP satellite data, as well as the study of the vertical structure of the winter anomaly on the basis of the GSM TIP model, were supported by the Russian Foundation for Basic Research within the framework of the research project no. 18-55-52006 MNT_a (K.G. Ratovsky, V.V. Klimenko, M.V. Klimenko, and I.E. Zakharenkova). Experimental results were obtained using the unique scientific facility Irkutsk Incoherent Scatter Radar (, funded by the core funding of Program FNI II.12. We used data processing techniques developed within the core funding of Program FNI II-16.


  1. 1.
    H. Rishbeth, J. Atmos. Sol.-Terr. Phys. 60, 1385 (1998).CrossRefGoogle Scholar
  2. 2.
    D. F. Strobel and M. B. McElroy, Planet. Space Sci. 18, 1181 (1970).CrossRefGoogle Scholar
  3. 3.
    D. G. Torr, M. R. Torr, and P. G. Richards, Geophys. Res. Lett. 7, 301 (1980).CrossRefGoogle Scholar
  4. 4.
    L. Zou, H. Rishbeth, I. C. F. Muller-Wodarg, et al., Ann. Geophys. 18, 927 (2000).CrossRefGoogle Scholar
  5. 5.
    H. Rishbeth, I. C. F. Muller-Wodarg, L. Zou, et al., Ann. Geophys. 18, 945 (2000).CrossRefGoogle Scholar
  6. 6.
    A. G. Burns, W. Wang, L. Qian, et al., J. Geophys. Res. 119, 4938 (2014).CrossRefGoogle Scholar
  7. 7.
    M. R. Torr and D. G. Torr, J. Atmos. Terr. Phys. 35, 2237 (1973). CrossRefGoogle Scholar
  8. 8.
    A. V. Pavlov and N. M. Pavlova, Geomagn. Aeron. 52, 335 (2012).CrossRefGoogle Scholar
  9. 9.
    J. W. King, G. L. Hawkins, and C. Seabrook, J. Atmos. Terr. Phys. 30, 1701 (1968). CrossRefGoogle Scholar
  10. 10.
    M. N. Fatkullin, J. Atmos. Terr. Phys. 32, 1067 (1970). CrossRefGoogle Scholar
  11. 11.
    N. M. Boenkova and N. V. Mednikova, Geomagn. Aeron. 12, 335 (1972).Google Scholar
  12. 12.
    W. K. Lee, H. Kil, Y. S. Kwak, et al., J. Geophys. Res. 116, A02302 (2011). CrossRefGoogle Scholar
  13. 13.
    A. V. Mikhailov and L. Perrone, J. Geophys. Res. 119, 7972 (2014). CrossRefGoogle Scholar
  14. 14.
    B. Zhao, W. Wan, L. Liu, et al., Ann. Geophys. 25, 2513 (2017). CrossRefGoogle Scholar
  15. 15.
    X. L. Huo, Y. B. Yuan, J. K. Ou, et al., Earth Planets Space 61, 1019 (2009). CrossRefGoogle Scholar
  16. 16.
    Y. Yasyukevich, A. Yasyukevich, K. Ratovsky, et al., J. Space Weather Space Clim. 8, A45 (2018). CrossRefGoogle Scholar
  17. 17.
    A. J. Mannucci, B. D. Wilson, D. N. Yuan, et al., Radio Sci. 33, 565 (1998). CrossRefGoogle Scholar
  18. 18.
    M. Rother, S. Choi, W. Mai, et al., Earth Observation with CHAMP (Springer, 2004), p. 413. Google Scholar
  19. 19.
    G. Beyerle, T. Schmidt, G. Michalak, et al., Geophys. Res. Lett. 32, L13806 (2005). CrossRefGoogle Scholar
  20. 20.
    A. P. Potekhin, A. V. Medvedev, A. V. Zavorin, D. S. Kushnarev, V. P. Lebedev, V. V. Lepetaev, and B. G. Shpynev, Geomagn. Aeron. 49, 1011 (2009). CrossRefGoogle Scholar
  21. 21.
    K. G. Ratovsky, A. V. Dmitriev, A. V. Suvorova, et al., Adv. Space Res. 60, 452 (2017). CrossRefGoogle Scholar
  22. 22.
    G. A. Zherebtsov, K. G. Ratovsky, M. V. Klimenko, et al., Adv. Space Res. 60, 444 (2017). CrossRefGoogle Scholar
  23. 23.
    A. A. Namgaladze, Yu. N. Koren’kov, V. V. Klimenko, et al., Geomagn. Aeron. 30, 612 (1990).Google Scholar
  24. 24.
    Y. N. Korenkov, V. V. Klimenko, M. Forster, et al., J. Geophys. Res. 103, A14, 697 (1998). CrossRefGoogle Scholar
  25. 25.
    M. V. Klimenko, V. V. Klimenko, and V. V. Bryukhanov, Geomagn. Aeron. 46, 457 (2006).CrossRefGoogle Scholar
  26. 26.
    V. V. Klimenko, A. T. Karpachev, and M. V. Klimenko, Russ. J. Phys. Chem. B 7, 611 (2013). CrossRefGoogle Scholar
  27. 27.
    V. V. Klimenko, A. T. Karpachev, M. V. Klimenko, K. G. Ratovsky, and N. A. Korenkova, Russ. J. Phys. Chem. B 10, 91 (2016). CrossRefGoogle Scholar
  28. 28.
    M. V. Klimenko, V. V. Klimenko, and I. E. Zakharenkova, Russ. J. Phys. Chem. B 10, 100 (2016). CrossRefGoogle Scholar
  29. 29.
    M. V. Klimenko, V. V. Klimenko, A. T. Karpachev, et al., Adv. Space Res. 55, 2020 (2015). CrossRefGoogle Scholar
  30. 30.
    M. V. Klimenko, V. V. Klimenko, K. G. Ratovsky, et al., Adv. Space Res. 56, 1951 (2015). CrossRefGoogle Scholar
  31. 31.
    M. V. Klimenko, V. V. Klimenko, I. E. Zakharenkova, et al., Radio Sci. 51, 1864 (2015). CrossRefGoogle Scholar
  32. 32.
    D. V. Chugunin, M. V. Klimenko, and V. V. Klimenko, Russ. J. Phys. Chem. B 12, 522 (2018). CrossRefGoogle Scholar
  33. 33.
    R. Lukianova and F. Christiansen, J. Geophys. Res. 111, A03213 (2006). CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • M. V. Klimenko
    • 1
    Email author
  • V. V. Klimenko
    • 1
  • I. E. Zakharenkova
    • 1
  • K. G. Ratovsky
    • 2
  • A. S. Yasyukevich
    • 2
  • Yu. V. Yasyukevich
    • 2
    • 3
  1. 1.West Department of Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation, Russian Academy of SciencesKaliningradRussia
  2. 2.Institute of Solar-Terrestrial Physics, Siberian Branch, Russian Academy of SciencesIrkutskRussia
  3. 3.Irkutsk State UniversityIrkutskRussia

Personalised recommendations