Advertisement

Russian Journal of Physical Chemistry B

, Volume 13, Issue 3, pp 394–400 | Cite as

Morphological Changes in Malignant Tumor Cells at Photodynamic Treatment Assessed by Digital Holographic Microscopy

  • A. A. Zhikhoreva
  • A. V. BelashovEmail author
  • D. A. Gorbenko
  • N. A. Avdonkina
  • I. A. Baldueva
  • A. B. Danilova
  • M. L. Gelfond
  • T. L. Nekhaeva
  • I. V. Semenova
  • O. S. Vasyutinskii
Article
  • 3 Downloads

Abstract

The paper presents an investigation of cell death dynamics and changes of cellular morphology induced by the intracellular generation of singlet oxygen as a result of photodynamic treatment. The response of kidney carcinoma, osteosarcoma, and skin melanoma cells to photodynamic treatment was analyzed through the changes in their thickness, average phase shift, and refractive index distribution. It was demonstrated that an irradiation dose of 42 J results in the necrosis of sarcoma and kidney carcinoma cells, although melanoma cells show no statistically significant changes in optical or morphological parameters.

Keywords:

digital holographic microscopy singlet oxygen morphology of living cells necrosis photodynamic treatment 

Notes

FUNDING

A.V. Belashov and A.A. Zhikhoreva thank the Russian Foundation for Basic Research for the financial support (grant no. 18-32-00364).

REFERENCES

  1. 1.
    G. Siboni, I. Amit-Patito, E. Weizman, et al., Cancer Lett. 196, 57 (2003).CrossRefGoogle Scholar
  2. 2.
    A. A. Krasnovsky, Jr., Biophysics 49, 289 (2004).Google Scholar
  3. 3.
    S. O. Gollnick and C. M. Brackett, Immunol. Res. 46, 216 (2010).CrossRefGoogle Scholar
  4. 4.
    C. N. Foroulis and J. A. Thorpe, J. Cardiothorac. Surg. 29, 30 (2006).CrossRefGoogle Scholar
  5. 5.
    S. A. Gross and H. C. Wolfsen, Gastrointest. Endosc. Clinics 20, 35 (2010).CrossRefGoogle Scholar
  6. 6.
    M. L. Gel’fond, A. I. Arsen’ev, and A. S. Barchuk, Ros. Bioter. Zh. 3 (2), 49 (2004).Google Scholar
  7. 7.
    A. B. Solov’eva, M. A. Savko, N. N. Glagolev, N. A. Aksenova, P. S. Timashev, N. A. Bragina, K. A. Zhdanova, and A. F. Mironov, Russ. J. Phys. Chem. A 92, 1621 (2018).CrossRefGoogle Scholar
  8. 8.
    A. B. Solov’eva, S. L. Kotova, P. S. Timashev, S. A. Zav’yalov, N. N. Glagolev, and G. V. Vstovskii, Russ. J. Phys. Chem. A 77, 100 (2003).Google Scholar
  9. 9.
    H. Abrahamse and M. R. Hamblin, Biochem. J. 473, 347 (2016).CrossRefGoogle Scholar
  10. 10.
    Q. Chen, S. Tian, J. Zhu, et al., Anti-Cancer Agents Med. Chem. 16, 763 (2016).CrossRefGoogle Scholar
  11. 11.
    D. M. Beltukova, I. V. Semenova, A. G. Smolin, et al., Chem. Phys. Lett. 662, 127 (2016).CrossRefGoogle Scholar
  12. 12.
    H. S. Jung, J. H. Lee, K. Kim, et al., J. Am. Chem. Soc. 139, 9972 (2017).CrossRefGoogle Scholar
  13. 13.
    S. Hackbarth and B. Roder, Photochem. Photobiol. Sci. 14, 329 (2015).CrossRefGoogle Scholar
  14. 14.
    S. Elmore, Toxicol. Pathol. 35, 495 (2007).CrossRefGoogle Scholar
  15. 15.
    C. A. Robertson, D. H. Evans, and H. Abrahamse, J. Photochem. Photobiol. B 96, 1 (2009).CrossRefGoogle Scholar
  16. 16.
    K. Lee, K. Kim, and J. Jung, Sensors 13, 4170 (2013).CrossRefGoogle Scholar
  17. 17.
    A. V. Belashov, A. A. Zhikhoreva, T. N. Belyaeva, et al., Opt. Lett. 41, 5035 (2016).CrossRefGoogle Scholar
  18. 18.
    A. V. Belashov, A. A. Zhikhoreva, V. G. Bespalov, et al., J. Opt. Soc. Am. B 34, 2538 (2017).CrossRefGoogle Scholar
  19. 19.
    A. A. Zhikhoreva, A. V. Belashov, V. G. Bespalov, et al., Biomed. Opt. Express 9, 5817 (2018).CrossRefGoogle Scholar
  20. 20.
    M. Mir, B. Bhaduri, R. Wang, et al., Prog. Opt. 57, 133 (2012).CrossRefGoogle Scholar
  21. 21.
    P. Marquet, C. Depeursinge, and P. J. Magistretti, Neurophotonics 1, 020901 (2014).CrossRefGoogle Scholar
  22. 22.
    S. Ban, E. Min, S. Baek, et al., Biomed. Opt. Express 9, 921 (2018).CrossRefGoogle Scholar
  23. 23.
    P. Girshovitz and N. T. Shaked, Biomed. Opt. Express 3, 1757 (2012).CrossRefGoogle Scholar
  24. 24.
    R. Cao, W. Xiao, X. Wu, et al., Biomed. Opt. Express 9, 72 (2018).CrossRefGoogle Scholar
  25. 25.
    A. V. Belashov, A. A. Zhikhoreva, T. N. Belyaeva, et al., Proc. SPIE 10685, 1068505 (2018).Google Scholar
  26. 26.
    I. V. Semenova, A. V. Belashov, T. N. Belyaeva, et al., Proc. SPIE 10497, 104970D (2018).Google Scholar
  27. 27.
    A. V. Belashov, A. A. Zhikhoreva, T. N. Belyaeva, et al., arXiv: 1810.12779 (2018).Google Scholar
  28. 28.
    R. I. Freshney, Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications (Wiley, New York, 2015).Google Scholar
  29. 29.
    V. P. Belik, I. M. Gadzhiev, I. V. Semenova, et al., Spectrochim. Acta, A 178, 181 (2017).CrossRefGoogle Scholar
  30. 30.
    D. M. Beltukova, V. P. Belik, O. S. Vasyutinskii, et al., Opt. Spectrosc. 124, 49 (2018).CrossRefGoogle Scholar
  31. 31.
    D. M. Beltukova, O. S. Vasyutinskii, A. L. Glazov, et al., Opt. Spectrosc. 122, 229 (2017).CrossRefGoogle Scholar
  32. 32.
    N. Pavillon, J. Kuhn, C. Moratal, et al., PloS ONE 7, e30912 (2012).CrossRefGoogle Scholar
  33. 33.
    R. Barer, Nature (London, U.K.) 169 (4296), 366 (1952).CrossRefGoogle Scholar
  34. 34.
    S. R. Zhao and H. A. Halling, in Proceedings of the 1995 IEEE Nuclear Science Symposium and Medical Imaging Conference (IEEE, NJ, 1995), Vol. 2, p. 1287.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. A. Zhikhoreva
    • 1
  • A. V. Belashov
    • 1
    Email author
  • D. A. Gorbenko
    • 1
  • N. A. Avdonkina
    • 2
  • I. A. Baldueva
    • 2
  • A. B. Danilova
    • 2
  • M. L. Gelfond
    • 2
  • T. L. Nekhaeva
    • 2
  • I. V. Semenova
    • 1
  • O. S. Vasyutinskii
    • 1
  1. 1.Ioffe Institute, Russian Academy of SciencesSt. PetersburgRussia
  2. 2.N.N. Petrov National Medical Research Center, Ministry of Health of RussiaSt. PetersburgRussia

Personalised recommendations