Russian Journal of Physical Chemistry B

, Volume 13, Issue 3, pp 413–420 | Cite as

Change in the Electronic Structure of Oxide Films on the Surface of a Titanium Coating in the Process of Interaction with Oxygen

  • S. Yu. SarvadiiEmail author
  • V. A. Kharitonov
  • N. V. Dokhlikova
  • M. V. Grishin
  • B. R. Shub


In this work, the characteristic features of the morphology and electronic structure of the oxide layer of a titanium coating synthesized on the surface of highly oriented pyrolytic graphite are determined with high spatial resolution. It is found that interaction with oxygen leads to the formation of an oxide TiOx, where 1.75 < x < 2. A possibility for the synthesis of an oxide layer is shown for a specified value of the width of the band gap on the surface of a titanium coating by tailoring the duration and temperature of its annealing in oxygen.


titanium oxide band gap nanoparticle atomic force microscopy scanning tunneling microscopy 



This work was performed within the state task no. 0082-2014-0011 “Nanochemistry” (AAAA-A17-117111600093-8) and was financially supported by the Russian Foundation for Basic Research (grant no. 18-33-00020).


  1. 1.
    H.-J. Freund, Top. Catal. 48, 137 (2008).CrossRefGoogle Scholar
  2. 2.
    H.-J. Freund, J. Am. Chem. Soc. 138, 8985 (2016).CrossRefGoogle Scholar
  3. 3.
    V. Ern and A. C. Switendick, Phys. Rev. 137, 1927 (1965).CrossRefGoogle Scholar
  4. 4.
    V. E. Henrich and P. A. Cox, The Surface Science of Metal Oxides (Cambridge Univ. Press, Cambridge, 1996).Google Scholar
  5. 5.
    D. Reyers-Coronado, G. R. Gattorno, M. E. E. Pesqueira, et al., Nanotecnology 19, 145605 (2008).CrossRefGoogle Scholar
  6. 6.
    H.-J. Guntherodt and R. Wiesendanger, Scanning Tunnelling Microscopy I. General Principles and Applications to Clean and Absorbate-Covered Surfaces (Springer, Berlin, 1994).Google Scholar
  7. 7.
    G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Appl. Phys. Lett. 40, 178 (1982).CrossRefGoogle Scholar
  8. 8.
    E. Meyer, H. J. Hug, and R. Bennewitz, Scanning Probe Microscopy (Springer, Berlin, 2004).CrossRefGoogle Scholar
  9. 9.
    R. J. Hamers and Y. Wang, J. Chem. Rev. 96, 1261 (1996).CrossRefGoogle Scholar
  10. 10.
    R. J. Hamers, R. M. Tromp, and J. E. Demuth, Phys. Rev. Lett. 56, 1972 (1986).CrossRefGoogle Scholar
  11. 11.
    B. Choudhary, M. Dey, and A. Choudhary, Int. Nano Lett. 3, 25 (2013).CrossRefGoogle Scholar
  12. 12.
    A. Naitabdi, L. K. Ono, and B. R. Cuenya, Appl. Phys. Lett. 89, 043101 (2006).CrossRefGoogle Scholar
  13. 13.
    R. F. Bartholomew and D. R. Frankl, Phys. Rev. 187, 828 (1969).CrossRefGoogle Scholar
  14. 14.
    M. Abbate, R. Potze, G. A. Sawatzky, et al., Solid State Commun. 94, 465 (1995).CrossRefGoogle Scholar
  15. 15.
    I. Leonov, A. N. Yaresko, V. N. Antonov, et al., J. Phys.: Condens. Matter 18, 10955 (2006).Google Scholar
  16. 16.
    A. K. Gatin, M. V. Grishin, A. A. Kirsankin, M. A. Kozhushner, V. S. Posvyanskii, V. A. Kharitonov, and B. R. Shub, Nanotechnol. Russ. 8, 627 (2013).CrossRefGoogle Scholar
  17. 17.
    T. Morikawa, R. Asahi, T. Ohwaki, et al., Jpn. J. Appl. Phys. 40, L561 (2001).CrossRefGoogle Scholar
  18. 18.
    J. B. Birks, Modern Dielectric Materials (Heywood, London, 1960).Google Scholar
  19. 19.
    T. Mashimo, R. Bagum, Y. Ogata, et al., Cryst. Growth Des. 17, 1460 (2017).CrossRefGoogle Scholar
  20. 20.
    J. P. W. Treacy, H. Hussain, X. Torrelles, et al., Phys. Rev. B 95, 075416 (2017).CrossRefGoogle Scholar
  21. 21.
    O. Kubaschewski and B. E. Hopkins, Oxidation of Metals and Alloys, 2nd ed. (Butterworths, London, 1962).Google Scholar
  22. 22.
    S. Y. Chae, M. K. Park, S. K. Lee, et al., Chem. Mater. 15, 3326 (2003).CrossRefGoogle Scholar
  23. 23.
    G. Hass and A. P. Bradford, J. Opt. Soc. Am. 47, 125 (1957).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • S. Yu. Sarvadii
    • 1
    Email author
  • V. A. Kharitonov
    • 1
  • N. V. Dokhlikova
    • 1
  • M. V. Grishin
    • 1
  • B. R. Shub
    • 1
  1. 1.Semenov Institute of Chemical Physics, Russian Academy of SciencesMoscowRussia

Personalised recommendations