Russian Journal of Physical Chemistry B

, Volume 13, Issue 3, pp 502–513 | Cite as

Removal of Mercury(II) from Aqueous Solutions via Dynamic Column Adsorption

  • I. V. KumpanenkoEmail author
  • N. A. Ivanova
  • M. V. Dyubanov
  • A. M. Skryl’nikov
  • N. Yu. Kovaleva
  • A. V. Roshchin


Dynamic column adsorption of mercury(II) from aqueous solutions on an Amberlite GT-73 cationite is studied. Experimental measurements derive the dependences C/C0 = f(t) (breakthrough curves), where C0 and C are the concentrations of mercury in the water flow inflowing to the sorbent fixed bed and outflowing from it, respectively, and t is the running time for different thicknesses of the fixed bed, as well as deriving rates of water flow and concentrations of mercury C0. It is shown that if the breakthrough curves belong to the logistic type, dependences of ln (C0/C − 1) on t are rectified and have the form ln (C0/C − 1) = a0a1t, where the parameters a0 = kqmM/Q and a1 = kC0, k is the rate constant of adsorption, qm is the dynamic adsorption capacity, M is the weight of the adsorbent, and Q is the volumetric flow rate. By transforming the experimental dependence of the first type to the second type followed by its description using this straight line function, the aforementioned parameters a0 and a1 are determined followed by the quantities k and qm, characterizing the adsorption of mercury on the cationite. It is found that the relative standard deviation is ≤2% for the experimental quantities k and qm. A formula for the calculation of the service lifetime of the adsorbent maintaining the regulated degree of purification of water is derived. The formula is successfully tested in the experiments on the removal of mercury from water described in this work.


dynamic column adsorption sorbent fixed bed breakthrough curve Amberlite GT-73 cationite removal of mercury(II) from water 



  1. 1.
    S. Chiarle, M. Ratto, and M. Rovatti, Water Res. 34, 2971 (2000).CrossRefGoogle Scholar
  2. 2.
    A. Denizli, K. Kesenci, Y. Arica, and E. Piskin, React. Funct. Polym. 44, 235 (2000).CrossRefGoogle Scholar
  3. 3.
    D. M. Manohar, K. A. Krishnan, and T. S. Anirudhan, Water Res. 36, 1609 (2002).CrossRefGoogle Scholar
  4. 4.
    K. H. Nam, S. Gomez-Salazar, and L. L. Tavlarides, Ind. Eng. Chem. Res. 42, 1955 (2003).CrossRefGoogle Scholar
  5. 5.
    J. Goel, K. Kadirvelu, and C. Rajagopal, Environ. Technol. 25, 141 (2004).CrossRefGoogle Scholar
  6. 6.
    F. S. Zhang, J. O. Nriagu, and H. Itoh, Water Res. 39, 389 (2005).CrossRefGoogle Scholar
  7. 7.
    H. Bessbousse, T. Rhlalou, J. F. Verchere, and L. Lebrun, J. Membr. Sci. 325, 997 (2008).CrossRefGoogle Scholar
  8. 8.
    J. M. Monteagudo and W. J. Ortiz, J. Chem. Technol. Biotechnol. 75, 767 (2000).CrossRefGoogle Scholar
  9. 9.
    A. Sari and M. Tuzen, J. Hazard. Mater. 171, 500 (2009).CrossRefGoogle Scholar
  10. 10.
    Y. Zeroual, A. Moutaouakkil, F. Z. Dzairi, et al., Bioresour. Technol. 90, 349 (2003).CrossRefGoogle Scholar
  11. 11.
    C. Green-Ruiz, Bioresour. Technol. 97, 1907 (2006).CrossRefGoogle Scholar
  12. 12.
    I. Ghodbane and O. Hamdaoui, J. Hazard. Mater. 160, 301 (2008).CrossRefGoogle Scholar
  13. 13.
    K. D. Mondale, R. M. Carland, and F. F. Aplan, Miner. Eng. 8, 535 (1995).CrossRefGoogle Scholar
  14. 14.
    H. Ramadan, A. Ghanem, and H. El-Rassy, Chem. Eng. J. 159, 107 (2010).CrossRefGoogle Scholar
  15. 15.
    K. P. Lisha and A. T. Pradeep, Gold Bull. 42, 144 (2009).CrossRefGoogle Scholar
  16. 16.
    P. I. Girginova, A. L. Daniel-Da-Silva, C. B. Lopes, et al., J. Colloid Interface Sci. 345, 234 (2010).CrossRefGoogle Scholar
  17. 17.
    L. Lv, Y. Zhang, K. Wang, A. K. Ray, and X. S. Zhao, J. Colloid Interface Sci. 325, 57 (2008).CrossRefGoogle Scholar
  18. 18.
    J. H. Choi, S. D. Kim, S. H. Noll, S. J. Oh, and W. J. Kim, Microporous Mesoporous Mater. 87, 163 (2006).CrossRefGoogle Scholar
  19. 19.
    C. B. Lopes, J. Coimbra, M. Otero, et al., Quim. Nova 31, 321 (2008).CrossRefGoogle Scholar
  20. 20.
    K. Popa, C. C. Pavel, N. Bilba, and A. Cecal, J. Radioanal. Nucl. Chem. 269, 155 (2006).CrossRefGoogle Scholar
  21. 21.
    A. M. Donia, A. A. Atia, and K. Z. Elwakeel, J. Hazard. Mater. 151, 372 (2008).CrossRefGoogle Scholar
  22. 22.
    S. O. Travin and O. B. Gromov, Khim. Bezopasn. 2 (1), 67 (2018).Google Scholar
  23. 23.
    P. Lodeiro, R. Herrero, and M. E. S. Vicente, J. Hazard. Mater. 137, 1649 (2006).CrossRefGoogle Scholar
  24. 24.
    I. V. Kumpanenko, A. V. Roshchin, N. A. Ivanova, A. V. Bloshenko, I. P. Tikhonov and A. M. Skryl’nikov, Russ. J. Phys. Chem. B 11, 543 (2017).CrossRefGoogle Scholar
  25. 25.
    J. Ritter and J. P. Bibler, Water Sci. Technol. 25, 165 (1992).CrossRefGoogle Scholar
  26. 26.
    I. V. Kumpanenko, N. A. Ivanova, M. V. Dyubanov, O. V. Shapovalova, A. A. Solov’yanov, and A. V. Roshchin, Russ. J. Phys. Chem. B 13, 328 (2019).Google Scholar
  27. 27.
    M. Goyal, M. Bhagat, and R. Dhawan, J. Hazard. Mater. 171, 1009 (2009).CrossRefGoogle Scholar
  28. 28.
    V. I. Eberil’, B. Yu. Yagud, and P. B. Mironov, Khim. Prom-st’ Segodnya, No. 1, 43 (2012).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • I. V. Kumpanenko
    • 1
    Email author
  • N. A. Ivanova
    • 1
  • M. V. Dyubanov
    • 1
  • A. M. Skryl’nikov
    • 1
  • N. Yu. Kovaleva
    • 1
  • A. V. Roshchin
    • 1
  1. 1.Semenov Institute of Chemical Physics, Russian Academy of SciencesMoscowRussia

Personalised recommendations