Advertisement

Russian Journal of Physical Chemistry B

, Volume 13, Issue 3, pp 401–407 | Cite as

New Amphiphilic Calix[4]Arene Derivatives with 4,5-Dicarboxytriazolyl Fragments: Synthesis and Use in Micellar Catalysis

  • G. A. Fatykhova
  • E. G. Makarov
  • D. A. Mironova
  • E. D. Sultanova
  • V. A. BurilovEmail author
  • S. E. Solovieva
  • I. S. Antipin
Article

Abstract

Amphiphilic calixarene derivatives with different lipophilicities and containing four 4,5-dicarboxytriazolyl fragments on the upper rim in a cone stereoisomeric form are obtained via azide-alkyne addition reaction. We showed that the amphiphilic macrocycles substituted with four octyl and tetradecyl groups on the lower rim form the monodisperse nanoaggregates in aqueous solutions. We found that the macrocycles possess fluorescence in the blue region. When concentration increases, there is a bathofloric shift of the emission maximum, which is due to aggregates. The resulting macrocycles were successfully used as a micellar medium for the Suzuki coupling reaction to show quantitative yields of iodine and bromoarenes in aqueous medium at room temperature.

Keywords:

calixarenes amphiphilic compounds luminescence micellar catalysis coupling reactions green chemistry 

Notes

FUNDING

This work was supported by the Russian Science Foundation (project no. 18-73-10033).

REFERENCES

  1. 1.
    P. T. Anastas and M. M. Kirchhoff, Acc. Chem. Res. 35, 686 (2002).  https://doi.org/10.1021/ar010065m CrossRefGoogle Scholar
  2. 2.
    R. A. Sheldon, Green Chem 9, 1273 (2007).  https://doi.org/10.1039/b713736m CrossRefGoogle Scholar
  3. 3.
    G. la Sorella, G. Strukul, and A. Scarso, Green Chem. 17, 644 (2015).  https://doi.org/10.1039/c4gc01368a CrossRefGoogle Scholar
  4. 4.
    B. H. Lipshutz, S. Ghorai, and M. Cortes-Clerget, Chem.-Eur. J. 24, 6672 (2018).  https://doi.org/10.1002/chem.201882662 CrossRefGoogle Scholar
  5. 5.
    H. Yang, X. Jiao, and S. Li, Chem. Commun. 48, 11217 (2012).  https://doi.org/10.1039/c2cc36273b CrossRefGoogle Scholar
  6. 6.
    D. K. J. Yeung, T. Gao, J. Huang, et al., Green Chem. 15, 2384 (2013).  https://doi.org/10.1039/c3gc41126e CrossRefGoogle Scholar
  7. 7.
    S. Shinkai, S. Mori, H. Koreishi, et al., J. Am. Chem. Soc. 108, 2409 (1986).  https://doi.org/10.1021/ja00269a045 CrossRefGoogle Scholar
  8. 8.
    S. B. Nimsea and T. Kim, Chem. Soc. Rev. 42, 366 (2013).  https://doi.org/10.1039/C2CS35233H CrossRefGoogle Scholar
  9. 9.
    S. E. Solovieva, V. A. Burilov, and I. S. Antipin, Macroheterocycles 10, 134 (2017).  https://doi.org/10.6060/mhc170512a CrossRefGoogle Scholar
  10. 10.
    V. Burilov, A. Valiyakhmetova, D. Mironova, et al., New J. Chem. 42, 2942 (2018).  https://doi.org/10.1039/C7NJ04099G CrossRefGoogle Scholar
  11. 11.
    L. S. Yakimova, L. H. Gilmanova, V. G. Evtugyn, et al., J. Nanopart. Res. 19, 173 (2017).  https://doi.org/10.1007/s11051-017-3868-9 CrossRefGoogle Scholar
  12. 12.
    A. B. Mirgorodskaya, E. I. Yackevich, Y. R. Kudryashova, et al., Colloids Surf., B 117, 497 (2014).  https://doi.org/10.1016/j.colsurfb.2014.02.003 CrossRefGoogle Scholar
  13. 13.
    S. Sayin and M. Yilmaz, Tetrahedron 72, 6528 (2016).  https://doi.org/10.1016/j.tet.2016.08.066 CrossRefGoogle Scholar
  14. 14.
    G. A. Fatykhova, V. A. Burilov, M. N. Dokuchaeva, S. E. Solov’eva, and I. S. Antipin, Dokl. Chem. 479, 64 (2018).  https://doi.org/10.7868/S0869565218120095 CrossRefGoogle Scholar
  15. 15.
    V. A. Burilov, G. A. Fatikhova, M. N. Dokuchaeva, et al., Beilstein J. Org. Chem 14, 1980 (2018).  https://doi.org/10.3762/bjoc.14.173 CrossRefGoogle Scholar
  16. 16.
    I. Huc and R. Oda, Chem. Commun., No. 20, 2025 (1999).  https://doi.org/10.1039/A906141J
  17. 17.
    R. J. Moser and E. V. Brown, Org. Chem. 37, 3938 (1972).  https://doi.org/10.1021/jo00797a037 CrossRefGoogle Scholar
  18. 18.
    P. Lu, C. Sanchez, J. Cornella, et al., Org. Lett. 11, 5710 (2009).  https://doi.org/10.1021/ol902482p CrossRefGoogle Scholar
  19. 19.
    R. Ranganathan, C. Vautier-Giongo, and B. L. Bales, J. Phys. Chem. B 107, 10312 (2003).  https://doi.org/10.1021/jp034346i CrossRefGoogle Scholar
  20. 20.
    N. Basilio and L. Garcia-Rio, Chem. Phys. Chem. 13, 2368 (2012).  https://doi.org/10.1002/cphc.201200175 CrossRefGoogle Scholar
  21. 21.
    C. Park, H. J. Song, and H. C. Choi, Chem. Commun., No. 32, 4791 (2009).  https://doi.org/10.1039/B900328B
  22. 22.
    A. Suzuki, Angew. Chem. Int. Ed. 50, 6722 (2011).  https://doi.org/10.1002/anie.201101379 CrossRefGoogle Scholar
  23. 23.
    A. Chatterjee and T. R. Ward, Catal. Lett. 146, 820 (2016).  https://doi.org/10.1007/s10562-016-1707-8 CrossRefGoogle Scholar
  24. 24.
    W. L. F. Armarego and C. L. Chai, Purification of Laboratory Chemicals (Elsevier, New York, 2009).Google Scholar
  25. 25.
    M. Brake, V. Böhmer, P. Kramer, et al., Supramol. Chem. 5, 65 (1993).  https://doi.org/10.1080/10610279308027509 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • G. A. Fatykhova
    • 1
  • E. G. Makarov
    • 1
  • D. A. Mironova
    • 1
  • E. D. Sultanova
    • 1
  • V. A. Burilov
    • 1
    Email author
  • S. E. Solovieva
    • 1
    • 2
  • I. S. Antipin
    • 1
    • 2
  1. 1.Kazan Federal UniversityKazanRussia
  2. 2.Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of SciencesKazanRussia

Personalised recommendations