Advertisement

Russian Journal of Physical Chemistry B

, Volume 13, Issue 3, pp 478–485 | Cite as

Structure of Associated Mixtures with Various Number of Intermolecular Bonds: Numerical Simulation

  • D. N. TarasovEmail author
  • R. P. Tiger
PHYSICAL METHODS FOR STUDYING CHEMICAL REACTIONS
  • 5 Downloads

Abstract

Using models of thermoassociated polymers, a cellular model of associated solutions is developed for cases where molecules of a solute are able to form from 2 to 6 bonds with each other. It is shown that solutions associated by weak intermolecular interactions in a certain range of concentrations can be considered as systems of flickering pseudo-polymeric macromolecules with a fractal structure.

Keywords:

solutions associated solutions solution structure polymer fractal dimension fractal structure lattice model numerical model 

Notes

FUNDING

This work was performed in terms of the RF Government task (theme V 45.5, 0082-2014-0015, АААА-А17-117032750201-9); it was supported by the Russian Foundation for Basic Research (project no. 17-03-00146).

REFERENCES

  1. 1.
    D. N. Tarasov and R. P. Tiger, J. Comput. Chem. 29, 220 (2008).CrossRefGoogle Scholar
  2. 2.
    D. N. Tarasov and R. P. Tiger, Khim. Fiz. 24 (1), 42 (2005).Google Scholar
  3. 3.
    D. N. Tarasov and R. P. Tiger, Khim. Fiz. 25 (5), 23 (2006).Google Scholar
  4. 4.
    M. Misawa, I. Dairoku, A. Honma, T. Sato, K. Maruyama, et al., J. Chem. Phys. 121, 4716 (2004).CrossRefGoogle Scholar
  5. 5.
    M. Misawa, T. Sato, and A. Onozuka, J. Appl. Crystallogr. 40, 93 (2007).CrossRefGoogle Scholar
  6. 6.
    E. Brini, C. J. Fennell, M. Fernandez-Serra, B. Hribar-Lee, M. Lukšič, et al., Chem. Rev. 117, 12385 (2017).CrossRefGoogle Scholar
  7. 7.
    R. Li, C. D’Agostino, J. McGregor, M. D. Mantle, J. A. Zeitler, and L. F. Gladden, J. Phys. Chem. B 118, 10156 (2014).CrossRefGoogle Scholar
  8. 8.
    O. Mishima and H. E. Stanley, Nature (London, U.K.) 396, 329 (1998).CrossRefGoogle Scholar
  9. 9.
    G. Matisz, A.-M. Kelterer, W. M. F. Fabian, and S. Kunsági-Máte, Phys. Chem. Chem. Phys. 17, 8467 (2015).CrossRefGoogle Scholar
  10. 10.
    M. Požar, B. Lovrinčević, L. Zoranić, T. Primorać, F. Sokolić, et al., Phys. Chem. Chem. Phys. 18, 23971 (2016).CrossRefGoogle Scholar
  11. 11.
    W. Wrzeszcz, S. Mazurek, R. Szostak, P. Tomza, and M. A. Czarnecki, Spectrochim. Acta, A 188, 349 (2018).CrossRefGoogle Scholar
  12. 12.
    P. Tomza, W. Wrzeszcz, S. Mazurek, R. Szostak, and M. A. Czarnecki, Spectrochim Acta, A 197, 88 (2018).CrossRefGoogle Scholar
  13. 13.
    D. N. Tarasov, R. P. Tiger, S. G. Entelis, A. V. Gorshkov, and S. V. Zaporozhskaya, Kinet. Catal. 38, 474 (1997).Google Scholar
  14. 14.
    D. N. Tarasov, R. P. Tiger, S. G. Entelis, A. V. Gorshkov, and M. A. Levina, Kinet. Catal. 40, 28 (1999).Google Scholar
  15. 15.
    R. P. Tiger, M. A. Levina, S. G. Entelis, and M. V. Andreev, Kinet. Catal. 43, 662 (2002).CrossRefGoogle Scholar
  16. 16.
    A. C. Draye, J.-J. Tondeur, and D. N. Tarasov, React. Kinet. Catal. Lett. 66, 199 (1999).CrossRefGoogle Scholar
  17. 17.
    A. A. Neverov, S. A. Deiko, and A. K. Yatsimirskii, Kinet. Katal. 30, 793 (1989).Google Scholar
  18. 18.
    W. P. Huskey, C. T. Warren, and J. L. Hogg, Org. Chem. 46, 59 (1981).CrossRefGoogle Scholar
  19. 19.
    D. N. Tarasov and R. P. Tiger, Russ. J. Phys. Chem. B 7, 574 (2013).CrossRefGoogle Scholar
  20. 20.
    M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, 2nd ed. (Oxford Univ. Press, New York, 2017).CrossRefGoogle Scholar
  21. 21.
    K. Binder, Monte Carlo and Molecular Dynamics Simulations in Polymer Science (Oxford Univ. Press, New York, 1995).Google Scholar
  22. 22.
    I. Carmesin and K. Kremer, Macromolecules 21, 2819 (1988).CrossRefGoogle Scholar
  23. 23.
    S. Shaffer, J. Chem. Phys. 101, 4205 (1994).CrossRefGoogle Scholar
  24. 24.
    C. C. Chen and E. E. Dormidontova, Macromolecules 37, 3905 (2004).CrossRefGoogle Scholar
  25. 25.
    F. F. Karl, J. Chem. Phys. 136, 244904 (2012).CrossRefGoogle Scholar
  26. 26.
    Z. Li, H. Djohari, and E. E. Dormidontova, J. Chem. Phys. 133, 184904 (2010).CrossRefGoogle Scholar
  27. 27.
    P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell Univ., Ithaca, London, 1979).Google Scholar
  28. 28.
    I. M. Lifshits, A. Yu. Grosberg, and A. R. Khokhlov, Sov. Phys. Usp. 22, 123 (1979).CrossRefGoogle Scholar
  29. 29.
    B. M. Smirnov, Sov. Phys. Usp. 29, 481 (1986).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Semenov Institute of Chemical Physics, Russian Academy of SciencesMoscowRussia

Personalised recommendations