Russian Journal of Physical Chemistry B

, Volume 13, Issue 3, pp 445–451 | Cite as

Modeling the Dynamics of the Excitation of Two-Level Particles with Pulses of Bichromatic Irradiation

  • V. A. MorozovEmail author


Mathematical modeling of the excitation dynamics of an isolated two-level particle under bichromatic irradiation is carried out on basis of solutions of the Schrödinger equation for the probability amplitudes of the states of the composite system of the particle and an interaction two-mode quantized radiation field, with the photons for each of which in a superposition state at the initial time. An analytical expression describing the change in the time of the population of the excited state of a particle in the adsorption of one of the irradiation photons in the simplest case when the irradiation is a sequence of identical pulses of a sinusoidal form is obtained. The obtained time dependence is compared with the time dependence of the diagonal matrix element of the statistical operator of the particle in the excited state found on the basis of the numerical solution of the system of the optical Bloch equations, with the corresponding irradiation described by the classical theory. Examples of significant differences in the type of these compared time dependences for a number of characteristic cases of irradiation are given.


photophysics of nanoparticles quantum radiation theory of composite systems optical Bloch equations 



  1. 1.
    B. W. Shore, Acta Phys. Slov. 58, 243 (2008).Google Scholar
  2. 2.
    F. Ehlotzky, Phys. Rep. 345, 175 (2001).CrossRefGoogle Scholar
  3. 3.
    M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge Univ., Cambridge, 1997; Fizmatlit, Moscow, 2003).Google Scholar
  4. 4.
    V. A. Astapenko, The Interaction of a Substance with a Bichromatic Electromagnetic Field (LAP Lambert Academic, Saarbrücken, 2012) [in Russian].Google Scholar
  5. 5.
    R. Guccione-Gush and H. P. Gush, Phys. Rev. A 10, 1474 (1974).CrossRefGoogle Scholar
  6. 6.
    S. I. Goreslavskii and V. P. Krainov, Sov. Phys. JETP 49, 13 (1979).Google Scholar
  7. 7.
    M. B. Menskii, Phys. Usp. 46, 1163 (2003).CrossRefGoogle Scholar
  8. 8.
    Q. Wu, D. J. Gauthier, and T. W. Mossberg, Phys. Rev. A 49, 1519 (1994).CrossRefGoogle Scholar
  9. 9.
    I. S. Osad’ko, Fluctuating Fluorescence of Nanoparticles (Fizmatlit, Moscow, 2011) [in Russian].Google Scholar
  10. 10.
    V. A. Morozov, Simulation of Population Dynamics of a Nanoparticle State (LAP Lambert Academic, Beau Bassin, Mauritius, 2018).Google Scholar
  11. 11.
    C. Brif, R. Chakrabarti, and H. Rabitz, New J. Phys. 12, 075008 (2010).CrossRefGoogle Scholar
  12. 12.
    S. J. Glaser, U. Boscain, T. Calarco, C. P. Koch, et al., Eur. Phys. J. D 69, 279 (2015).CrossRefGoogle Scholar
  13. 13.
    V. A. Morozov and P. P. Shorygin, Opt. Spectrosc. 63, 409 (1987).Google Scholar
  14. 14.
    S. Swain, J. Phys. A: Math. Gen. 5, 1587 (1972).CrossRefGoogle Scholar
  15. 15.
    V. A. Morozov and P. P. Shorygin, Opt. Spectrosc. 51, 549 (1981).Google Scholar
  16. 16.
    V. A. Morozov, P. P. Shorygin, and Yu. V. Gutop, Opt. Spectrosc. 58, 193 (1985).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Zelinsky Institute of Organic Chemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations