Advertisement

Russian Journal of Physical Chemistry B

, Volume 13, Issue 1, pp 119–138 | Cite as

Energy-Saturated Metal Complexes

  • M. A. IlyushinEmail author
  • A. A. Kotomin
  • S. A. Dushenok
Combustion, Explosion, and Shock Waves
  • 5 Downloads

Abstract

A review of energetic coordination compounds (metal complexes) that show promise for application in safety initiation tools is conducted. Green substances meeting most environmental requirements, as well as light-sensitive compounds and their laser initiation are considered. Their chemical structures and properties are given. Methods for calculation of the single-crystal density and the speed of detonation of energy-saturated metal complexes are proposed.

Keywords

energy-saturated metal complexes coordination compounds safety primers environmental friendliness cobalt aminates light-sensitive materials laser initiation single-crystal density speed of detonation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Matyáš and J. Pachman, Primary Explosives (Springer, Heidelberg, 2013). doi  https://doi.org/10.1007/978-8-642-28436-6 CrossRefGoogle Scholar
  2. 2.
    Green Energetic Materials, Ed. by T. Brinck (Wiley, Chichester, 2014).Google Scholar
  3. 3.
    T. M. Klapötke, Chemistry of High-Energy Materials (Walter de Gruyter, Berlin, 2015).CrossRefGoogle Scholar
  4. 4.
    M. Ilyushin, I. Shugalei, and A. Sudarikov, High-Energy Metal Complexes. Synthesis, Properties, Application (LAP Lambert Academic, Saarbrücken, 2017) [in Russian].Google Scholar
  5. 5.
    A. A. Kotomin, and A. S. Kozlov, Russ. J. Appl. Chem. 79, 957 (2006).CrossRefGoogle Scholar
  6. 6.
    A. A. Kotomin, and A. S. Kozlov, The Density of Organic Compounds. Method of Calculating the Density of the Contributions of Molecular Fragments, The SchoolBook (SPbGTI, St. Petersburg, 2011) [in Russian].Google Scholar
  7. 7.
    M. A. Ilyushin, A. V. Smirnov, A. A. Kotomin, et al., Hanneng Cailiao (Energ. Mater.) 2 (1), 16 (1994).Google Scholar
  8. 8.
    A. A. Kotomin, in Proceedings of the International Conference 11th Kharitonov’s Thematic Readings (VNIIEF-RFYaTs, Sarov, 2009), p. 108.Google Scholar
  9. 9.
    A. A. Kotomin, S. A. Dushenok, and A. S. Kozlov, in Proceedings of the International Conference 9th Kharitonov’s Thematic Readings (VNIIEF-RFYaTs, Sarov, 2007), p. 130.Google Scholar
  10. 10.
    M. A. Ilyushin, I. V. Tselinskii, A. A. Kotomin, et al., Energetic Substances for Initiators, The School-Book (SPbGTI, St. Petersburg) [in Russian].Google Scholar
  11. 11.
    J. W. Fronabarger, W. Fleming, and M. L. Lieberman, in Proceedings of the 11th International Symposium on Explosion and Pyrotechnic (The Combust. Institute, Paris, 1981), p. 1.Google Scholar
  12. 12.
    M. A. Ilyushin, A. M. Sudarikov, I. V. Tselinskii, et al., Metal Complexes in High-Energy Composition, Ed. by I. V. Tselinskii (Leningr. Gos. Univ. im A. S. Pushkina, St. Petersburg, 2010) [in Russian].Google Scholar
  13. 13.
    P. E. Luebcke, P. M. Dickson, and J. E. Field, Proc. R. Soc. London, Ser. A 448, 439 (1995).CrossRefGoogle Scholar
  14. 14.
    A. V. Smirnov, M. A. Ilyushin, and I. V. Tselinskii, Russ. J. Appl. Chem. 77, 794 (2004).CrossRefGoogle Scholar
  15. 15.
    V. I. Pavlov, A. S. Kursin, E. A. Levin, et al., RF Patent No. 2055148, Byull. Izobret., No. 6 (1996), p. 8.Google Scholar
  16. 16.
    L. R. Bates, in Proceedings of the 13th International Symposium on Explosion and Pyrotechnic (The Combust. Inst., London, 1986), p. 1.Google Scholar
  17. 17.
    W. Yu, G. Zeng, J. Li, et al., Hanneng Cailiao (Energ. Mater.) 15 (3), 28 (2007).Google Scholar
  18. 18.
    A. Yu. Zhilin, M. A. Ilyushin, I. V. Tselinskii, A. S. Kozlov, and I. S. Lisker, Russ. J. Appl. Chem. 76, 572 (2003).CrossRefGoogle Scholar
  19. 19.
    M. A. Ilyushin, and I. V. Tselinskii, Ross. Khim. Zh. 45 (1), 72 (2001).Google Scholar
  20. 20.
    J. Fronabarger, M. Williams, K. Armstrong, et al., in Proceedings of the Fuze Conference (Navsea Center, Hawthorne, NV, 2005), p. 22.Google Scholar
  21. 21.
    M. A. Ilyushin, M. A. Aleksandrova, I. V. Bachurina, A. V. Smirnov, and I. V. Tselinskii, Russ. J. Appl. Chem. 83, 92 (2010).CrossRefGoogle Scholar
  22. 22.
    M. A. Ilyushin, and I. V. Tselinskii, Russ. J. Appl. Chem. 73, 1305 (2000).Google Scholar
  23. 23.
    A. S. Dudyrev, I. V. Tselinskii, and M. A. Ilyushin, in Chemical Technologies, Ed. by P. D. Sarkisov (RKhTU im. D. I. Mendeleeva, Moscow, 2003), p. 403 [in Russian].Google Scholar
  24. 24.
    V. I. Tarzhanov, B. V. Litvinov, A. D. Zinchenko, et al., Izv. Vyssh. Uchebn. Zaved., Gorn. Zh., Nos. 9∓10, 94 (1999).Google Scholar
  25. 25.
    N. K. Bourne, Proc. R. Soc. London, Ser. A 457, 1401 (2001).CrossRefGoogle Scholar
  26. 26.
    A. V. Chernai, V. V. Sobolev, V. A. Chernai, et al., in Physics of Pulsed Material Processing, Ed. by V. V. Sobolev (Art-Press, Dnepropetrovsk, 2003), p. 267 [in Russian].Google Scholar
  27. 27.
    S. R. Ahmad and M. Cartwright, Laser Ignition of Energetic Materials (Wiley, Chichester, 2015).Google Scholar
  28. 28.
    S. Everett, E. S. Hafenrichter, B. W. Marshall, et al., AIAA Paper No. 245 (Am. Inst. Aeronaut. Astronaut., 2003).Google Scholar
  29. 29.
    L. Chen, D. Sheng, F. Ma, et al., Hanneng Cailiao (Energ. Mater.) 15, 217 (2007).Google Scholar
  30. 30.
    N. Szimhardt, M. H. H. Wurzenberger, A. Beringer, et al., J. Mater. Chem. A 5, 23753 (2017). doi  https://doi.org/10.1039/C7TA07780G CrossRefGoogle Scholar
  31. 31.
    T. W. Myers, J. A. Bjorgaard, K. E. Brown, et al., J. Am. Chem. Soc. 138, 4685 (2016). doi  https://doi.org/10.1021/jacs.6b02155 CrossRefGoogle Scholar
  32. 32.
    T. W. Myers, K. E. Brown, D. E. Chavez, et al., Inorg. Chem. 56, 2297 (2017). doi  https://doi.org/10.1021/acs.inorgchem.6b02998 CrossRefGoogle Scholar
  33. 33.
    M. A. Ilyushin, A. A. Kotomin, S. A. Dushenok, and V. V. Efanov, Vestn. NPO im. S. A. Lavochkina, No. 1, 35, 43 (2017).Google Scholar
  34. 34.
    I. A. Ugryumov, M. A. Ilyushin, I. V. Tselinskii, and A. S. Kozlov, Russ. J. Appl. Chem. 76, 439 (2003).CrossRefGoogle Scholar
  35. 35.
    A. V. Chernai, V. V. Sobolev, V. A. Chernai, et al., Fiz. Goreniya Vzryva 39 (3), 105 (2003).Google Scholar
  36. 36.
    M. A. Ilyushin, I. V. Tselinsky, I. V. Bachurina, et al., Hunneng Cailiao (Energ. Mater.) 14, 401 (2006).Google Scholar
  37. 37.
    M. A. Ilyushin, I. V. Tselinsky, I. A. Ugrumov, et al., in Proceedings of the 6th Seminar on New Trends in Research of Energetic Materials (Pardubice Univ., Pardubice, Czech Republic, 2003), p. 146.Google Scholar
  38. 38.
    S. Cudzilo and R. Szmigielsky, Biul. Wojsk. Akad. Tech. 49 (12), 5 (2000).Google Scholar
  39. 39.
    M. A. Ilyushin, I. V. Tselinsky, A. V. Smirnov, et al., Centr. Eur. J. Energ. Mater. 9, 279 (2012).Google Scholar
  40. 40.
    M. A. Ilyushin, I. V. Tselinskii, A. V. Smirnov, et al., Izv. SPbGTI(TU), No. 13 (39), 56 (2012).Google Scholar
  41. 41.
    M. A. Ilyushin, I. V. Tselinsky, I. A. Ugrumov, et al., Centr. Eur. J. Energ. Mater. 2, 21 (2005).Google Scholar
  42. 42.
    I. A. Ugryumov, A. S. Kozlov, M. A. Ilyushin, et al., Kosm. Nauka Tekhnol. 11, 58 (2005).CrossRefGoogle Scholar
  43. 43.
    M. A. Ilyushin, and I. V. Tselinskii, RF Patent No. 2225840, Byull. Izobret., No. 8 (2004), p. 18.Google Scholar
  44. 44.
    M. A. Ilyushin, I. A. Ugryumov, V. Yu. Dolmatov, et al., RF Patent No. 2309139, Byull. Izobret., No. 30 (2007), p. 23.Google Scholar
  45. 45.
    S. I. Gerasimov, M. A. Ilyushin, and V. A. Kuz’min, Tech. Phys. Lett. 41, 338 (2015).CrossRefGoogle Scholar
  46. 46.
    M. A. Ilyushin, S. I. Gerasimov, V. A. Kuz’min, et al., Centr. Eur. J. Energ. Mater. 12, 671 (2015).Google Scholar
  47. 47.
    T. M. Klapötke, P. Mayer, K. Polborn, et al., in Proceedings of the 37th International Annual Conference ICT (Fraunhofer ICT, Karlsruhe, 2006), p. 134.Google Scholar
  48. 48.
    T. M. Klapötke and C. Miro Sabate, Centr. Eur. J. Energ. Mater. 7, 161 (2010).Google Scholar
  49. 49.
    M. Freis, T. M. Klapötke, J. Stierstorfer, and N. Szimhardt, Inorg. Chem. 56, 7936 (2017). doi  https://doi.org/10.1021/acs.inorgchem.7b00432 CrossRefGoogle Scholar
  50. 50.
    M. H. H. Wurzenberger, N. Szimhardt, and J. Stierstorfer, J. Am. Chem. Soc. 140, 3206 (2018). doi  https://doi.org/10.1021/jacs.7b13230 CrossRefGoogle Scholar
  51. 51.
    M. Joas and T. M. Klapötke, Propell. Explos. Pyrotech. 40, 246 (2015). doi  https://doi.org/10.1002/prep.201400142 CrossRefGoogle Scholar
  52. 52.
    N. Szimhardt, and J. Stierstorfer, Chem.-Eur. J. 24, 2687 (2018). doi  https://doi.org/10.1002/chem.201705030 CrossRefGoogle Scholar
  53. 53.
    N. Fischer, M. Joas, T. M. Klapötke, and J. Stierstorfer, Inorg. Chem. 52, 13791 (2013). doi  https://doi.org/10.1021/ic402038x CrossRefGoogle Scholar
  54. 54.
    A. V. Smirnov, S. A. Fedotov, and M. V. Ageev, Boeprip. Vysokoenerg. Kondens. Sist., No. 3, 27 (2016).Google Scholar
  55. 55.
    A. A. Kotomin, Ross. Khim. Zh. 41 (4), 89 (1997).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • M. A. Ilyushin
    • 1
    Email author
  • A. A. Kotomin
    • 1
  • S. A. Dushenok
    • 1
  1. 1.SCTB TechnologSt. PetersburgRussia

Personalised recommendations