Advertisement

Russian Journal of Physical Chemistry B

, Volume 13, Issue 1, pp 145–155 | Cite as

Estimating Chemical Conversion Rates for Composite Explosives on the Basis of Experimental Data on Pseudo-Ideal Detonation

  • B. S. ErmolaevEmail author
  • A. A. Shevehenko
  • A. Yu. Dolgoborodov
  • I. V. Maklashova
Combustion, Explosion, and Shock Waves
  • 3 Downloads

Abstract

The conditions for the appearance of a plateau-like region called pseudo-ideal detonation in the dependence of the velocity of detonation (VOD) of composite explosives on the diameter of a charge were considered. A theoretical model of steady-state non-ideal detonation with a slightly curved front and a two-stage mechanism of chemical reaction was used for analysis. The calculations were performed for a trinitrotoluene-50% ammonium nitrate mixture and a mechanically activated ammonium perchlorate-20% aluminum mixture. The coefficients of the equations describing the global chemical conversion rates of components were fitted in the calculations. In both cases, the dependence of the VOD on the diameter of the reciprocal charge with a plateau-like region was obtained for an increasing conversion rate of the major explosive (trinitrotoluene and ammonium perchlorate, respectively).

Keywords

non-ideal detonation pseudo-ideal detonation composite explosives velocity of detonation charge diameter ammonium perchlorate ammonium nitrate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. A. Leiper, and J. Cooper, in Proceedings of the 10th International Detonation Symposium (ONR, Boston, 1993), p. 267.Google Scholar
  2. 2.
    B. S. Ermolaev, B. A. Khasainov, and H.-N. Presles, in Proceedings of the Europyro 2007, 34th IPS (AFPYRO, Broune, France, 2007), Vol. 1, p. 323.Google Scholar
  3. 3.
    A. Ya. Apin, I. M. Voskoboinikov, and G. S. Sosnova, Prikl. Mekh. Tekh. Fiz., No. 5, 115 (1963).Google Scholar
  4. 4.
    A. Ya. Apin, and G. V. Dimza, Dokl. Akad. Nauk SSSR 192, 850 (1970).Google Scholar
  5. 5.
    V. V. Lavrov, and K. K. Shvedov, Khim. Fiz. 22 (9), 67 (2003).Google Scholar
  6. 6.
    A. A. Shevchenko, A. Yu. Dolgoborodov, V. G. Kirilenko, and M. A. Brazhnikov, Combust. Explos., Shock Waves 53, 461 (2017).CrossRefGoogle Scholar
  7. 7.
    V. V. Lavrov, Cand. Sci. (Phys. Math.) Dissertation (Inst. Probl. Chem. Phys. RAS, Chernogolovka, 2008).Google Scholar
  8. 8.
    B. S. Ermolaev, P. V. Komissarov, G. N. Sokolov, and A. A. Borisov, Russ. J. Phys. Chem. B 6, 613 (2012).CrossRefGoogle Scholar
  9. 9.
    R. I. Nigmatulin, Dynamics of Multiphase Media (Nauka, Moscow, 1987; CRC, Boca Raton, FL, 1990), Part 1.Google Scholar
  10. 10.
    D. C. Swift, and B. D. Lambourn, in Proceedings of the 10th International Detonation Symposium (ONR, Boston, 1993), p. 386.Google Scholar
  11. 11.
    J. Bdzil, and D. S. Stewart, Phys. Fluids A 1, 1261 (1989).CrossRefGoogle Scholar
  12. 12.
    S. G. Andreev, A. V. Babkin, F. A. Baum, et al., in Explosion Physics, Ed. by L. P. Orlenko (Fizmatlit, Moscow, 2002), Vol. 1 [in Russian].Google Scholar
  13. 13.
    A. Ya. Apin, Dokl. Akad. Nauk SSSR 24, 922 (1939).Google Scholar
  14. 14.
    M. W. Beckstead, in Proceedings of the Conference on Internal Aerodynamics in Solid Rocket Propulsion, Rhode-Saint-Genèse, Belgium, May 27–31, 2002, RTO-EN-023 (2004), p. 5.Google Scholar
  15. 15.
    S. B. Viktorov, S. A. Gubin, I. V. Maklashova, and V. I. Pepekin, Khim. Fiz. 24 (12), 22 (2005).Google Scholar
  16. 16.
    Ch. Mader, Numerical Modeling of Detonation (Univ. California Press, Berkeley, 1979).Google Scholar
  17. 17.
    A. K. Parfenov, and I. M. Voskoboinikov, Fiz. Goreniya Vzryva 5, 347 (1969).Google Scholar
  18. 18.
    B. S. Ermolaev, and A. A. Sulimov, Connective Combustion and Low-Speed Detonation of Porous Energy Materials (Torus, Moscow, 2017) [in Russian].Google Scholar
  19. 19.
    A. K. Parfenov, and A. Ya. Apin, Nauch.-Tekh. Probl. Goreniya Vzryva, No. 1, 109 (1965).Google Scholar
  20. 20.
    D. Price, A. R. Clairmont, Jr., and J. O. Erkman, Combust. Flame 20, 389 (1973).CrossRefGoogle Scholar
  21. 21.
    A. A. Shevchenko, V. G. Kirilenko, M. A. Brazhnikov, and A. Yu. Dolgoborodov, Gorenie Vzryv 10 (1), 84 (2017).Google Scholar
  22. 22.
    W. H. Andersen and R. E. Pesante, in Proceedings of the 8th International Symposium on Combustion (Williams Wilkins, Baltimore, US, 1961), p. 705.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • B. S. Ermolaev
    • 1
    Email author
  • A. A. Shevehenko
    • 1
    • 2
  • A. Yu. Dolgoborodov
    • 1
    • 2
    • 3
  • I. V. Maklashova
    • 2
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Engineering Physics InstituteNational Research Nuclear UniversityMoscowRussia
  3. 3.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia

Personalised recommendations