Advertisement

Russian Journal of Physical Chemistry B

, Volume 13, Issue 1, pp 214–218 | Cite as

Ice Particle Formation in the Lower Stratosphere

  • A. E. Aloyan
  • A. N. YermakovEmail author
  • V. O. Arutyunyan
Chemical Physics of Atmospheric Phenomena

Abstract

Field observation data on aerosol ice particles in the lower stratosphere and the results of laboratory modeling of their microphysics are considered. A model of ice particle formation in the lower stratosphere is described using classical nucleation theory. The results of computational experiments indicate that the formation of the ice phase in supercooled ternary solutions can occur only if these liquid particles are supercooled (~3 K), which is consistent with the data from field observation data.

Keywords

ice aerosol particles homogeneous nucleation microphysics polar stratospheric clouds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. A. Angell, Ann. Rev. Phys. Chem. 34, 593 (1983). doi  https://doi.org/10.1146/annurev.pc.34.100183.003113 CrossRefGoogle Scholar
  2. 2.
    O. Mishima and H. E. Stanley, Nature (London, U.K.) 396 (6709), 329 (1998).CrossRefGoogle Scholar
  3. 3.
    Th. Koop and B. J. Murray, J. Chem. Phys. 145, 211915 (2016). doi  https://doi.org/10.1063/1.4962355 CrossRefGoogle Scholar
  4. 4.
    D. Lowe and R. MacKenzie, J. Atmos. Sol.-Terr. Phys. 70, 13 (2008).CrossRefGoogle Scholar
  5. 5.
    O. Kirner, R. Ruhnke, J. Buchholz-Dietsch, et al., Geosci. Model. Dev. 4, 169 (2011).CrossRefGoogle Scholar
  6. 6.
    J. E. Dye, D. Baumgardner, B. W. Gandrud, et al., J. Geophys. Res. 97, 8015 (1992).CrossRefGoogle Scholar
  7. 7.
    Y. S. Djikaev, A. Tabazadeh, P. Hamill, and H. Reiss, J. Phys. Chem. A 106, 10247 (2002).CrossRefGoogle Scholar
  8. 8.
    T. Koop and K. S. Carslaw, Science (Washington, DC, U. S.) 272, 1638 (1996).CrossRefGoogle Scholar
  9. 9.
    A. E. Aloyan, A. N. Ermakov, and V. O. Arutyunyan, Opt. Atmos. Okeana 31 (2), 136 (2018).Google Scholar
  10. 10.
    T. Koop, B. Luo, A. Tsias, and T. Peter, Nature (London, U.K.) 406 (6797), 611 (2000).CrossRefGoogle Scholar
  11. 11.
    H. R. Pruppacher and J. D. Klett, Microphysics of Clouds and Precipitation, 2nd ed. (Kluwer Academic, Dordrecht, 1997), pp. 79, 205.Google Scholar
  12. 12.
    K. S. Carslaw, M. Wirth, A. Tsias, et al., J. Geophys. Res. 103, 5785 (1998).CrossRefGoogle Scholar
  13. 13.
    B. Luo, K. S. Carslaw, N. Peter, et al., Geophys. Res. Lett. 22, 247 (1995).CrossRefGoogle Scholar
  14. 14.
    K. S. Carslaw, T. Peter, and S. L. Clegg, Rev. Geophys. 35, 125 (1997).CrossRefGoogle Scholar
  15. 15.
  16. 16.
    S. R. Kawa, D. W. Fahey, K. K. Kelly, et al., J. Geophys. Res. 97 (D8), 7925 (1992).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. E. Aloyan
    • 1
  • A. N. Yermakov
    • 2
    Email author
  • V. O. Arutyunyan
    • 1
  1. 1.Institute of Numerical MathematicsRussian Academy of SciencesMoscowRussia
  2. 2.Tal’rose Institute of Energy Problems of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations