Advertisement

Russian Journal of Physical Chemistry B

, Volume 13, Issue 1, pp 196–204 | Cite as

SWCNT as a Model Nanosensor for Associated Petroleum Gas Molecules: Via DFT/B3LYP Investigations

  • Fouad N. AjeelEmail author
  • Mohammed H. Mohammed
  • Alaa M. Khudhair
Chemical Physics of Nanomaterials
  • 2 Downloads

Abstrac

We investigated the adsorption of associated petroleum gas (APG) molecules: methane (CH4), ethane (C2H6), propane (C3H8), butane (C4H10), pentane (C5H12), nitrogen (N2), and carbon dioxide (CO2) on the surface of (6, 0) zigzag SWCNT using density functional theory (DFT) calculations to explore a highly sensitive nanosensor for these molecules which take great attention due to environmental and industrial considerations. To better understand the energetic and electronic properties, which include the adsorption energies, HOMO energies, Fermi level energies, LUMO energies, energy gaps, work functions, dipole moments, and the reactivity descriptors are performed for SWCNT in free mode and interacted with the above gas molecules. The molecular electrostatic potential and the electron density surfaces have been constructed. Moreover, we used orbital analysis counting the density of states (DOS) to finding out the possible orbital hybridization between APG molecules and SWCNT. Based on the results, we believe that SWCNT has potential to be a new effective nanosensor for APG molecules.

Keywords

SWCNT associated petroleum gas DFT nanosensor adsorption energy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Knizhnikov and N. Poussenkova, Preprint (World Wildlife Federation, Inst. World Economy and Int. Relations, Russia, 2009).Google Scholar
  2. 2.
    T. H. Roland, Policy 37, 407 (2008).CrossRefGoogle Scholar
  3. 3.
    H. Devold, Oil and Gas Production Handbook: An Introduction to Oil and Gas Production (Lulu.com, 2013).Google Scholar
  4. 4.
    A. Solov’yanov, Russ. J. Gen. Chem. 81, 2531 (2011).CrossRefGoogle Scholar
  5. 5.
    S. Moon, N.M. Vuong, D. Lee, D. Kim, H. Lee, D. Kim, S.-K. Hong, and S.-G. Yoon, Sens. Actuators, B 222, 166 (2016).CrossRefGoogle Scholar
  6. 6.
    M. Asad and M. H. Sheikhi, Sens. Actuators, B 231, 474 (2016).CrossRefGoogle Scholar
  7. 7.
    X. Zhang, H. Cui, Y. Gui, and J. Tang, Nanoscale Res. Lett. 12, 177 (2017).CrossRefGoogle Scholar
  8. 8.
    H. Elhaes, A. Fakhry, and M. Ibrahim, Mater. Today: Proc. 3, 2483 (2016).Google Scholar
  9. 9.
    G. A. Rivas, M. D. Rubianes, M. L. Pedano, N. F. Ferreyra, G. Luque, and S. A. Miscoria, in New Topics in Electrochemistry Research, Ed. by M. Nunez (Nova Science, New York, 2006), p. 1.Google Scholar
  10. 10.
    R. Jaaniso and O. K. Tan, Semiconductor Gas Sensors (Elsevier, Amsterdam, 2013).CrossRefGoogle Scholar
  11. 11.
    S. Reich, C. Thomsen, and J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties (Wiley, New York, 2008).Google Scholar
  12. 12.
    M. J. O’Connell, Carbon Nanotubes: Properties and Applications (CRC, Boca Raton, FL, 2006).CrossRefGoogle Scholar
  13. 13.
    M. Yoosefian, Z. Barzgari, and J. Yoosefian, Struct. Chem. 25, 9 (2014).CrossRefGoogle Scholar
  14. 14.
    A.D. Becke, J. Chem. Phys. 98, 5648 (1993).CrossRefGoogle Scholar
  15. 15.
    C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).CrossRefGoogle Scholar
  16. 16.
    M. J. Frisch, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, et al., Gaussian 09, Rev. A.02 (Gaussian, Inc., Wallingford CT, 2016).Google Scholar
  17. 17.
    A. M. Khuodhair, F. N. Ajeel, and M. O. Oleiwi, J. Appl. Phys. Sci. Int. 6, 202 (2016).Google Scholar
  18. 18.
    F. N. Ajeel, A. M. Khudhair, and A. A. Mohammed, Int. J. Sci. Res. 4, 2334 (2015).Google Scholar
  19. 19.
    C. J. Cramer, Essentials of Computational Chemistry: Theories and Models (Wiley, Chichester, 2013).Google Scholar
  20. 20.
    M. Oftadeh, S. Naseh, and M. Hamadanian, Comput. Theor. Chem. 966, 20 (2011).CrossRefGoogle Scholar
  21. 21.
    M. Oftadeh, M. Gholamian, and H. H. Abdallah, Int. Nano Lett. 3, 1 (2013).CrossRefGoogle Scholar
  22. 22.
    P. Pannopard, P. Khongpracha, M. Probst, and J. Limtrakul, J. Mol. Graph. Model. 28, 62 (2009).CrossRefGoogle Scholar
  23. 23.
    M. Noei, J. Mol. Liq. 224, 757 (2016).CrossRefGoogle Scholar
  24. 24.
    M. Eslami, V. Vahabi, and A. A. Peyghan, Phys. E (Amsterdam, Neth.) 76, 6 (2016).CrossRefGoogle Scholar
  25. 25.
    G. Vallejo-Fernandez, N. Aley, J. Chapman, and K. O’Grady, Appl. Phys. Lett. 97, 222505 (2010).CrossRefGoogle Scholar
  26. 26.
    S. Chen, S. Scheiner, T. Kar, and U. Adhikari, Int. J. Electrochem. Sci. 7, 7128 (2012).Google Scholar
  27. 27.
    M. H. Al-Abboodi, F. N. Ajeel, and A. M. Khudhair, Phys. E (Amsterdam, Neth.) 88, 1 (2017).CrossRefGoogle Scholar
  28. 28.
    S. S. Li, Semiconductor Physical Electronics (Springer Science, New York, 2012).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Fouad N. Ajeel
    • 1
    Email author
  • Mohammed H. Mohammed
    • 1
    • 2
  • Alaa M. Khudhair
    • 2
  1. 1.Department of Physics, College of ScienceUniversity of SumerRifaiIraq
  2. 2.Department of Physics, College of ScienceSouthern Illinois UniversityIllinoisUSA

Personalised recommendations