Skip to main content
Log in

Experimental Study of Methane Combustion over Metallic Palladium upon Flame Penetration through Obstacles

  • Combustion, Explosion, and Shock Waves
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

In this paper, the flame penetration of a dilute methane–oxygen mixture through obstacles containing fine-meshed iron grids with Pd-wire turns is studied, using high-speed recording. It is shown that the Pd catalyst can, under certain conditions, suppress the development of flame propagation in a dilute methane–oxygen mixture since the Pd surface is highly efficient in the termination of active reaction centers. Therefore, kinetic factors can be important even under conditions of high turbulence. Numerical simulation using the Navier–Stokes equations for a compressible reaction medium in the low Mach-number approximation shows a qualitative agreement with a number of experimental regularities. The results obtained are of interest for the model development of turbulent flows in reactive media and in matters relating to explosion safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Davy, Phil. Trans. R. Soc. London, Ser. A 107, 77 (1817).

    Article  Google Scholar 

  2. J. H. Lee and D. L. Trimm, Fuel Process. Technol. 42, 339 (1995).

    Article  CAS  Google Scholar 

  3. O. Deutschmann, L. I. Maier, U. Riedel, et al., Catal. Today 59, 141 (2000).

    Article  CAS  Google Scholar 

  4. M. Lyubovsky, H. Karim, P. Menacherry, et al., Catal. Today 83, 183 (2003).

    Article  CAS  Google Scholar 

  5. S. Salomons, R. E. Hayes, M. Poirier, et al., Catal. Today 83, 59 (2003).

    Article  CAS  Google Scholar 

  6. J. K. Lampert, M. S. Kazia, and R. J. Farrauto, Appl. Catal. B 14, 211 (1997).

    Article  CAS  Google Scholar 

  7. IAEA Safety Standard Series, Design of Reactor Containment Systems for Nuclear Power Plants, Safety Guide No. NS-G-1.10 (IAEA, 2004).

  8. A. Frennet, Catal. Rev.-Sci. Eng. 10, 37 (1974).

    Article  CAS  Google Scholar 

  9. C. F. Cullis and B. M. Willatt, J. Catal. 83, 267 (1983).

    Article  CAS  Google Scholar 

  10. R. F. Hicks, H. Qi, M. L. Young, and R. G. Lee, J. Catal. 122, 280 (1990).

    Article  CAS  Google Scholar 

  11. R. E. Hayes, S. Kolaczkowskii, P. Lib, and S. Awdryb, Chem. Eng. Sci. 56, 4815 (2001).

    Article  CAS  Google Scholar 

  12. X. Zheng, J. Mantzaras, and R. Bombach, Proc. Combust. Inst. 34, 2279 (2013).

    Article  CAS  Google Scholar 

  13. N. M. Rubtsov, The Modes of Gaseous Combustion (Springer International, Switzerland, 2016).

    Book  Google Scholar 

  14. www.nanosized-powders.com/production/nanopowders/ni.php.

  15. N. M. Rubtsov, V. I. Chernysh, G. I. Tsvetkov, et al., Mendeleev Commun. 27, 101 (2017).

    Article  CAS  Google Scholar 

  16. B. Lewis and G. von Elbe, Combustion, Explosions and Flame in Gases (Academic, New York, London, 1987).

    Google Scholar 

  17. N. M. Rubtsov, Key Factors of Combustion. From Kinetics to Gas Dynamics (Springer International, Switzerland, 2017).

    Book  Google Scholar 

  18. G. I. Golodets and V. M. Vorotyntsev, React. Kinet. Catal. Lett. 25, 75 (1984).

    Article  CAS  Google Scholar 

  19. A. Majda, Equations for Low Mach Number Combustion (Center of Pure Appl. Math., Univ. California, Berkeley, 1982).

    Google Scholar 

  20. Th. Alasard, Arch. Ration. Mech. Anal. 180, 1 (2006).

    Article  Google Scholar 

  21. F. Nicoud, J. Comput. Phys. 158, 71 (2000).

    Article  Google Scholar 

  22. F. A. Williams, Combustion Theory, 2nd ed. (The Benjamin/Cummings, Menlo Park, CA, 1985).

    Google Scholar 

  23. V. Akkerman, V. Bychkov, A. Petchenko, et al., Combust. Flame 145, 675 (2006).

    Article  CAS  Google Scholar 

  24. J. F. van Kampen, PhD Thesis (Univ. of Twente, Enschede, the Netherlands, 2006).

    Google Scholar 

  25. D. I. Abugov and V. M. Bobylev, Theory and Calculation of Rocket Solid Fuels Engines (Mashinostroenie, Moscow, 1987) [in Russian].

    Google Scholar 

  26. P. Clavin, Ann. Rev. Fluid Mech. 26, 321 (1994).

    Article  Google Scholar 

  27. G. Backstrom, Simple Fields of Physics by Finite Element Analysis (GB Publ., London, 2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Kalinin.

Additional information

Original Russian Text © N.M. Rubtsov, A.P. Kalinin, G.I. Tsvetkov, K.Ya. Troshin, A.I. Rodionov, 2018, published in Khimicheskaya Fizika, 2018, Vol. 37, No. 11, pp. 42–48.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubtsov, N.M., Kalinin, A.P., Tsvetkov, G.I. et al. Experimental Study of Methane Combustion over Metallic Palladium upon Flame Penetration through Obstacles. Russ. J. Phys. Chem. B 12, 1017–1023 (2018). https://doi.org/10.1134/S1990793118060118

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793118060118

Keywords

Navigation