Advertisement

Russian Journal of Physical Chemistry B

, Volume 12, Issue 5, pp 883–889 | Cite as

Effect of Mechanical Activation of Granulated and Powdered Ni + Al Mixtures on Flame-Propagation Rates and Sample Elongation in Combustion

  • N. A. KochetovEmail author
  • B. S. Seplyarskii
Combustion, Explosion, and Shock Waves
  • 4 Downloads

Abstract

This paper represents the first study of the effect of the duration of mechanical activation (MA) of pre-granulated Ni + Al mixtures with nickel powders of different types on the combustion rate and the change in the sample length after synthesis. The initial mixtures containing different types of nickel had different combustion rates. The mechanical activation leads to an equalization of the combustion rates for powder mixtures at an MA time of 3 to 5 min and for pre-granulated mixtures in the entire MA time interval. The rate of combustion increases with the increased MA time for both powdered and pre-granulated mixtures. An explanation of the observed dependences is proposed. A sudden elongation of the samples during combustion is shown to take place after preliminary granulation of the mixtures. This result is the consequence of a significant increase in gassing due to bundle decomposition at the combustion of granulated mixtures.

Keywords

self-propagating high-temperature synthesis mechanical activation granulation nickel powder sample elongation average particle size 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. A. Kochetov and S. G. Vadchenko, Int. J. Self-Prop. High-Temp. Synth. 21, 55 (2012). doi 10.3103/S1061386212010086CrossRefGoogle Scholar
  2. 2.
    N. A. Kochetov and B. S. Seplyarskii, Russ. J. Phys. Chem. B 11, 288 (2017). doi 10.7868/S0207401X17040082CrossRefGoogle Scholar
  3. 3.
    Fundamental Principles of Mechanic Activation, Mechanosynthesis and Mechanochemical Technology, Ed. by E. G. Avvakumov (Sib. Otdel. RAN, Novosibirsk, 2009) [in Russian].Google Scholar
  4. 4.
    M. A. Korchagin, T. F. Grigor’eva, B. B. Bokhonov, et al., Fiz. Goreniya Vzryva 39, 60 (2003).Google Scholar
  5. 5.
    S. G. Vadchenko, Int. J. Self-Prop. High-Temp. Synth. 24, 90 (2015). doi 10.3103/S1061386215020107Google Scholar
  6. 6.
    S. G. Vadchenko, Int. J. Self-Prop. High-Temp. Synth. 25, 210 (2016). doi 10.3103/S1061386216040105CrossRefGoogle Scholar
  7. 7.
    A. S. Rogachev, N. F. Shkodich, S. G. Vadchenko, et al., Int. J. Self-Prop. High-Temp. Synth. 22 (4), 3103 (2013).Google Scholar
  8. 8.
    M. A. Korchagin, T. F. Grigor’eva, A. P. Barinova, et al., Int. J. Self-Prop. High-Temp. Synth. 9, 307 (2000).Google Scholar
  9. 9.
    N. F. Shkodich, A. S. Rogachev, and S. G. Vadchenko, et al., Int. J. Self-Prop. High-Temp. Synth. 21, 104 (2012). doi 10.3103/S1061386212020100CrossRefGoogle Scholar
  10. 10.
    B. S. Seplyarskii, A. G. Tarasov, R. A. Kochetkov, et al., Mendeleev Commun. 24, 242 (2014). doi 10.1016/j.mencom.2014.06.019CrossRefGoogle Scholar
  11. 11.
    S. G. Vadchenko, A. Yu. Gordopolov, and A. S. Mukas’yan, Dokl. Phys. 42, 288 (1997).Google Scholar
  12. 12.
    V. I. Vershinnikov and A. K. Filonenko, Fiz. Goreniya Vzryva 14 (5), 42 (1978).Google Scholar
  13. 13.
    B. S. Seplyarskii and S. G. Vadchenko, Dokl. Phys. Chem. 398, 203 (2004).CrossRefGoogle Scholar
  14. 14.
    A. S. Rogachev, N. A. Kochetov, V. V. Kurbatkina, et al., Fiz. Goreniya Vzryva 42 (4), 61 (2006).Google Scholar
  15. 15.
    V. E. Ivanov, I. I. Papirov, G. F. Tikhinskii, et al., Pure and Ultrapure Materials (Metalurgiya, Moscow, 1965), p. 102 [in Russian].Google Scholar
  16. 16.
    B. I. Khaikin, Combustion Processes in Chemical Technology and Metallurgy (OIKhF AN SSSR, Chernogolovka, 1975), p. 227 [in Russian].Google Scholar
  17. 17.
    A. P. Aldushin, B. I. Khaikin, K. G. Shkadinskii, et al., Fiz. Goreniya Vzryva 12, 819 (1976).Google Scholar
  18. 18.
    V. M. Shkiro and I. P. Borovinskaya, Fiz. Goreniya Vzryva 12 (6), 945 (1976).Google Scholar
  19. 19.
    A. G. Akopyan, S. K. Dolukhanyan, and I. P. Borovinskaya, Fiz. Goreniya Vzryva 14 (3), 70 (1978).Google Scholar
  20. 20.
    A. I. Kirdyashkin, Yu. M. Maksimov, and E. A. Nekrasov, Fiz. Goreniya Vzryva 17 (4), 33 (1981).Google Scholar
  21. 21.
    V. A. Shcherbakov and A. N. Pityulin, Fiz. Goreniya Vzryva 19 (5), 108 (1983).Google Scholar
  22. 22.
    B. S. Seplyarskii, Dokl. Phys. Chem. 396, 130 (2004).CrossRefGoogle Scholar
  23. 23.
    V. N. Sanin, D. M. Ikornikov, D. E. Andreev, et al., Int. J. Self-Prop. High-Temp. Synth. 23, 232 (2014). doi 10.3103/S1061386214040098CrossRefGoogle Scholar
  24. 24.
    Yu. S. Pogozhev, V. N. Sanin, D. M. Ikornikov, et al., Int. J. Self-Prop. High-Temp. Synth. 25, 186 (2016). doi 10.3103/S1061386216030092CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Merzhanov Institute of Structural Macrokinetics and Materials ScienceRussian Academy of SciencesChernogolovkaRussia

Personalised recommendations