Russian Journal of Physical Chemistry B

, Volume 12, Issue 5, pp 836–847 | Cite as

Novel Method for the Oxidation of Aliphatic Hydrocarbons to Alcohols

  • G. A. KapralovaEmail author
  • A. M. Chaikin
Kinetics and Mechanism of Chemical Reactions. Catalysis


A novel method for the conversion of hydrocarbons to alcohols using a reaction of gas-phase oxidation by oxygen in the presence of boron trichloride has been developed and described in detail. The reaction represents radical long-chain alkoxylation of boron trichloride. It proceeds at moderate temperatures of 150–180°C and atmospheric pressures of less than one atmosphere, resulting in methane conversion to (CH3O)3–nBCln (n = 0–2) and ethane conversion to (CH3CH2O)3–nBCln (n = 0–2). The hydrolysis of the reaction products generates CH3OH and C2H5OH, respectively. The yield of methanol reaches up to 55% at the conversion of methane of ~15% at the early stages of the reaction. The yield of ethanol is at least 65% of the reacted ethane nearly to the end of the reaction.


selectivity oxidation methanol ethanol boron trichloride alkoxylation IR and NMR spectra heat of formation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. S. Arutyunov, V. Ya. Basevich, and V. I. Vedeneev, Russ. Chem. Rev. 65, 197 (1996).CrossRefGoogle Scholar
  2. 2.
    G. A. Kapralova, Yu. A. Kurskii, V. G. Fedotov, A. M. Chaikin, and G. A. Abakumov, Dokl. Chem. 410, 178 (2006).CrossRefGoogle Scholar
  3. 3.
    G. A. Kapralova, A. M. Chaikin, G. A. Abakumov, and Yu. A. Kurskii, Russ. J. Phys. Chem. B 3, 172 (2009).CrossRefGoogle Scholar
  4. 4.
    C. Olliver and P. Renaud, Chem. Rev. 101, 3415 (2001).CrossRefGoogle Scholar
  5. 5.
    T. S. Pokidova and E. T. Denisov, Russ. Chem. Bull. 50, 390 (2001).CrossRefGoogle Scholar
  6. 6.
    W. G. French, L. J. Pace, and V. A. Foertmeyer, J. Phys. Chem. 82, 2191 (1978).CrossRefGoogle Scholar
  7. 7.
    J.-L. Jourdain, G. Laverdet, G. le Bras, and J. Combourieu, J. Chem. Phys. 78, 254 (1981).Google Scholar
  8. 8.
    S. Benson, Thermochemical Kinetics (Wiley, New York, 1968).Google Scholar
  9. 9.
    J. A. Merrit and L. C. Robertson, J. Chem. Phys. 67 (8), 35 (1977).Google Scholar
  10. 10.
    H. Nöth and B. Wrackmeyer, Nuclear Magnetic Resonance Spectroscopy of Boron Compounds (Springer, Berlin, Heidelberg, New York, 1978).CrossRefGoogle Scholar
  11. 11.
    W. Gerrard, The Organic Chemistry of Boron (Academic, New York, 1961).Google Scholar
  12. 12.
    Thermodynamical Properties of Individual Substances, Ed. by V. P. Glushko (Nauka, Moscow, 1981), Vol. 3 [in Russian].Google Scholar
  13. 13.
    M. Th. Nguyen, L. G. Vanquickenborne, M. Sana, and G. Leroy, J. Phys. Chem. 97, 5224 (1993).CrossRefGoogle Scholar
  14. 14.
    R. Atkinson, D. L. Baulch, R. F. Cox, et al., J. Phys. Chem. Ref. Data 26, 1009 (1997).Google Scholar
  15. 15.
    R. R. Servoss and H. M. Clark, J. Chem. Phys. 26, 1179 (1957).CrossRefGoogle Scholar
  16. 16.
    D. W. Aubrey, M. F. Lappert, and H. Pyszora, J. Chem. Soc., No. 5, 1931 (1961).CrossRefGoogle Scholar
  17. 17.
    E. Wiberg and W. Sutterlin, Z. Anorg. Allg. Chem. 202, 1 (1931).CrossRefGoogle Scholar
  18. 18.
    S. W. Benson and H. E. O’Neal, Kinetic Data on Gas Phase Unimolecular Reaction (Nat. Bureau Standarts, New York, 1970).CrossRefGoogle Scholar
  19. 19.
    J. D. Cox and G. Pilcher, Thermochemistry of Organic and Organometallic Compounds (Academic, London, New York, 1970).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations