Advertisement

Russian Journal of Physical Chemistry B

, Volume 12, Issue 5, pp 923–928 | Cite as

Synthesis and Photocatalytic Activity of Nanosized Powder of Zn-Doped Titanium Dioxide

  • E. M. BayanEmail author
  • T. G. Lupeiko
  • L. E. Pustovaya
Chemical Physics of Nanomaterials
  • 11 Downloads

Abstract

Nanosized powder materials made Zn-doped titanium dioxide with concentration of 0.1, 0.5, and 1.0 mol % Zn2+ have been synthesized from aqueous solutions of inorganic compounds of titanium modified with zinc(II) ions. The materials obtained have been studied by electron microscopy, thermogravimetric analysis, and powder X-ray diffraction. It has been found that if zinc ions introduced in titanium dioxide the stabilization of anatase modification takes place retaining size and morphology of particles. The materials synthesized have shown photocatalytic activity under ultraviolet and visible light irradiation. The highest photocatalytic activity has been found for material containing 0.1 mol % Zn2+ and calcined at 600°С.

Keywords

nanomaterials nanoparticles titanium dioxide photocatalytic activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Chen, J. Y. Wang, W. Z. Li, and M. T. Ju, J. Mater. Eng. 44, 103 (2016). doi 10.11868/j.issn.1001-4381.2016.03.017CrossRefGoogle Scholar
  2. 2.
    R. Fagan, D. E. McCormack, D. D. Dionysiou, and S. C. Pillai, Mater. Sci. Semicond. Process. 42, 2 (2016). doi 10.1016/j.mssp.2015.07.052CrossRefGoogle Scholar
  3. 3.
    Z. R. Ismagilov, L. T. Tsikoza, N. V. Shikina, V. F. Zarytova, V. V. Zinoviev, and S. N. Zagrebelnyi, Russ. Chem. Rev. 78, 873 (2009). doi 10.1070/RC2009v078n09ABEH004082CrossRefGoogle Scholar
  4. 4.
    M. Pérez-González, S. A. Tomás, J. Santoyo-Salazar, and M. Morales-Luna, Ceram. Int. 43, 8831 (2017). doi 10.1016/j.ceramint.2017.04.016CrossRefGoogle Scholar
  5. 5.
    C. Wang, H. Liu, and Y. Qu, J. Nanomater. 2013, 319637 (2013). doi 10.1155/2013/319637Google Scholar
  6. 6.
    C. L. Bianchi, E. Colombo, S. Gatto, et al., J. Photochem. Photobiol., A 280, 27 (2014). doi 10.1016/j.jphotochem. 2014.02.002CrossRefGoogle Scholar
  7. 7.
    A. Buthiyappan, A. R. Abdul Aziz, and W. M. A. van Daud, Rev. Chem. Eng. 32, 1 (2016). doi 10.1515/revce-2015-0034CrossRefGoogle Scholar
  8. 8.
    H. Wang and C. You, J. Chem. Eng. 292, 199 (2016). doi 10.1016/j.cej.2016.02.017CrossRefGoogle Scholar
  9. 9.
    S. H. Yoon, Appl. Surf. Sci. 423, 71 (2017). doi 10.1016/j.apsusc.2017.06.147CrossRefGoogle Scholar
  10. 10.
    Y. Li, Y. Bian, Y. Zhang, and Z. Bian, Appl. Catal., B 206, 293 (2017). doi 10.1016/j.apcatb.2017.01.044CrossRefGoogle Scholar
  11. 11.
    J. Li, X. Yang, and T. Ishigaki, J. Phys. Chem. B 110, 14611 (2006). doi 10.1021/jp0620421CrossRefGoogle Scholar
  12. 12.
    L. G. Devi and R. Kavitha, Appl. Catal. B 140–141, 559 (2013). doi 10.1016/j.apcatb.2013.04.035CrossRefGoogle Scholar
  13. 13.
    V. Etacheri, C. D. Valentin, J. Schneider, et al., J. Photochem. Photobiol., C 25, 1 (2015). doi 10.1016/j.jphotochemrev. 2015.08.003CrossRefGoogle Scholar
  14. 14.
    M. Pelaez, N. T. Nolan, S. C. Pillai, et al., Appl. Catal. B: Environ. 125, 331 (2012). doi 10.1016/j.apcatb.2012.05.036CrossRefGoogle Scholar
  15. 15.
    S. A. Bakar and C. Ribeiro, J. Photochem. Photobiol., C 27, 1 (2016). doi 10.1016/j.jphotochemrev.2016.05.001CrossRefGoogle Scholar
  16. 16.
    T. Umebayashi, T. Yamaki, S. Yamamoto, et al., J. Appl. Phys. 93, 5156 (2003). doi 10.1063/1.1565693CrossRefGoogle Scholar
  17. 17.
    M. Fronzi, A. Iwaszuk, A. Lucid, and M. Nolan, J. Phys.: Condens. Matter 28, 23 (2016). doi 10.1088/0953-8984/28/7/074006Google Scholar
  18. 18.
    M. Hamadanian, S. Karimzadeh, V. Jabbari, and D. Villagrán, Mater. Sci. Semicond. Proc. 41, 168 (2016). doi 10.1016/j.mssp.2015.06.085CrossRefGoogle Scholar
  19. 19.
    M. Anpo, Pure Appl. Chen. 72, 1787 (2000). doi 10.1351/pac200072091787CrossRefGoogle Scholar
  20. 20.
    A. Fuerte, M. D. Hernéz-Alonso, A. J. Maira, et al., Chem. Commun., No. 24, 2718 (2001). doi 10.1039/b107314aCrossRefGoogle Scholar
  21. 21.
    H. Yamashita, J. Synchrotr. Radiat. 8, 569 (2001).CrossRefGoogle Scholar
  22. 22.
    S. N. Phattalung, S. Limpijumnong, and J. Yu, Appl. Catal., B 200, 1 (2017). doi 10.1016/j.apcatb.2016.06.054CrossRefGoogle Scholar
  23. 23.
    L. G. Devi, B. N. Murthy, and S. G. Kumar, Mater. Sci. Eng. B 166, 1 (2010). doi 10.1016/j.mseb.2009.09.008CrossRefGoogle Scholar
  24. 24.
    C. Chen, Z. Wang, S. Ruan, et al., Dyes Pigments 77, 204 (2008). doi 10.1016/j.dyepig.2007.05.003CrossRefGoogle Scholar
  25. 25.
    Y. H. Lin, T. K. Tseng, and H. Chu, Appl. Catal., A 469, 221 (2014). doi 10.1016/j.apcata.2013.10.006CrossRefGoogle Scholar
  26. 26.
    S. Chen, W. Zhao, W. Liu, and S. Zhang, Appl. Surf. Sci. 255, 2478 (2008).CrossRefGoogle Scholar
  27. 27.
    J. N. Deng, B. Yu, and Z. Lou, Sens. Actuators, B 184, 21 (2013).CrossRefGoogle Scholar
  28. 28.
    Y. Ku, Y. H. Huang, and Y. C. Chou, J. Mol. Catal., A 342–343, 18 (2011). doi 10.1016/j.molcata.2011.04.003CrossRefGoogle Scholar
  29. 29.
    G. K. Prasad, P.V.R.K. Ramacharyulu, B. Singh, et al., J. Mol. Catal., A 349, 55 (2011). doi 10.1016/j.molcata. 2011.08.018CrossRefGoogle Scholar
  30. 30.
    E. M. Bayan, T. G. Lupeiko, L. E. Pustovaya, and A. G. Fedorenko, Springer Proc. Phys. 175, 51 (2016). doi 10.1007/978-3-319-26324-3_4CrossRefGoogle Scholar
  31. 31.
    E. M. Bayan, T. G. Lupeiko, L. E. Pustovaya, and A. G. Fedorenko, Nanotechnol. Russ. 12, 269 (2017). doi 10.1134/S199507801703003XCrossRefGoogle Scholar
  32. 32.
    E. M. Bayan, T. G. Lupeiko, E. V. Kolupaeva, et al., Springer Proc. Phys. 193, 17 (2017). doi 10.1007/978-3-319-56062-5_2CrossRefGoogle Scholar
  33. 33.
    V. Stengl, S. Bakardjieva, and N. Murafa, Mater. Chem. Phys. 114, 217 (2009). doi 10.1016/j.matchemphys.2008.09.025CrossRefGoogle Scholar
  34. 34.
    L. Wang, X. Fu, Y. Han, et al., J. Nanomater. 2013, 321459 (2013). doi 10.1155/2013/321459Google Scholar
  35. 35.
    E. M. Bayan, T. G. Lupeiko, L. E. Pustovaya, A. A. Knyashchuk and A. G. Fedorenko, Russ. J. Phys. Chem. B 11, 600 (2017). doi 10.1134/S1990793117040042CrossRefGoogle Scholar
  36. 36.
    S. Silvestr and E. L. Foletto, Ceram. Int. 43, 14057 (2017). doi 10.1016/j.ceramint.2017.07.140CrossRefGoogle Scholar
  37. 37.
    B. Palanisamy, C. M. Babu, B. Sundaravel, et al., J. Hazard. Mater. 252, 233 (2013). doi 10.1016/j.jhazmat.2013.02.060CrossRefGoogle Scholar
  38. 38.
    M. Crisan, N. Dragan, D. Crisan, et al., Ceram. Int. 42, 3088 (2016). doi 10.1016/j.ceramint.2015.10.097CrossRefGoogle Scholar
  39. 39.
    N. Khatun, P. Rajput, D. Bhattacharya, et al., Ceram. Int. 43, 14128 (2017). doi 10.1016/j.ceramint.2017.07.153CrossRefGoogle Scholar
  40. 40.
    Y. Jiang, Y. Sun, H. Liu, et al., Dyes Pigments 78, 77 (2008). doi 10.1016/j.dyepig.2007.10.009CrossRefGoogle Scholar
  41. 41.
    Z. Liu, C. Liu, J. Ya, and E. Lei, Renew. Energy 36, 1177 (2011). doi 10.1016/j.renene.2010.09.019CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. M. Bayan
    • 1
    Email author
  • T. G. Lupeiko
    • 1
  • L. E. Pustovaya
    • 2
  1. 1.South Federal UniversityRostov-on-DonRussia
  2. 2.Don State Technical UniversityRostov-on-DonRussia

Personalised recommendations